
Breeding 10x Developers
With Developer Productivity Engineering



@BrianDemers | bdemers

Who is this guy?



@BrianDemers | bdemers

source: Silicon Valley



@BrianDemers | bdemers

VS



@BrianDemers | bdemers

VS



@BrianDemers | bdemers

Developer 
Productivity 
Engineering





Myth Origin (probably) 
The Coding War Games





The “best” programmers outperformed the 
worst by roughly a 10:1 ratio 
There were some interesting “non-factors”:  

Language
Years of Experience 
Number of Defects 
Salary



What Mattered?

⬢ Paired programmers from the same organization performed at roughly the same level
⬢ The average difference was only 21% between paired participants
⬢ They didn't work together on the task, but they came from the same organization
⬢ The best organizations performed 11.1x better than the worst

"While this productivity differential among programmers is 
understandable, there is also a 10 to 1 difference in 
productivity among software organizations." 

-Harlan D. Mills, Software Productivity



The best performers are clustering in some 
organizations while the worst performers are 

clustering in others. 

Some companies are doing a lot worse than 
others.

Something about their environment and corporate 
culture is failing to attract and keep good people 

or is making it impossible for even good people to 
work effectively. 



Average performance of those in the top quarter was 2.6 times 
better than that of those in the bottom quarter. 

Though the phrase had not yet been coined, increased 
productivity came down to developer experience.



10x Organizations are Manufactured, Not Born



@BrianDemers | bdemers



… But Most Organizations Aren’t Aligned

In a study dated April 27, 2022, between Microsoft and the University of 
Victoria in British Columbia, Developers and Managers were surveyed on 

their interpretation of the SPACE framework



When surveyed with the following questions, 
Developers and Managers answered much 

differently

https://arxiv.org/pdf/2111.04302.pdf

When thinking about your work, 
how do you define productivity? 

Developers Managers
When thinking about your team, 
how do you define productivity?

https://arxiv.org/pdf/2111.04302.pdf


DevOps, 12-Factor, Agile, etc, have still not captured all bottlenecks, 
friction, and obstacles to throughput 

Many are hiding in plain sight, in the developer experience itself 

A 10x organization should think about reducing build and test feedback 
times, and improving the consistency and reliability of builds



The only initiatives that will positively impact 
performance are ones which 

increase throughput while simultaneously 
decreasing cost. 



It’s Time for Developer Productivity 
Engineering







23

Code
Code

Wait Time for Local Build
Debug Build Failure

Lunch

Code
Wait Time for Local Build

Investigate/Fix Flaky Tests

Sprint Waiting time for CI Build



xkcd.com/303



xkcd.com/303

Testing



xkcd.com/303

CHAT GPT IS DOWN

CHAT GPT IS 
STILL DOWN



Creative Flow

It isn’t about being the best, because once you tap into 
the creative flow, the best doesn’t exist. It’s about 
experiencing the magic. Its about being in that place 
where your heart is free. It’s about grabbing hold of the 
intangible, and making something beautiful.“

- Laura Jaworski, Artist and Author

What Problems Does DPE Solve?

This should have been observable

This takes too long to fix

This takes too long!



The anatomy and importance of fast feedback cycles

PRODUCTIVITY

QUALITY

FASTER FEEDBACK 
CYCLES

Less idle/
wait time

Less 
context 

switching

More focused 
developers

Earlier quality 
checks

Fewer downstream 
incidents

More frequent 
builds

Smaller change 
sets

Few merge conflicts Faster MTTR

More efficient 
troubleshooting

New behavior

Effect

KEY BENEFIT

KEY:



Build caching delivers fast build and test 
feedback cycles 



Build Caching

⬢ Introduced to the Java world by Gradle 

in 2017
⬢ Maven has an open source build 

cache too
⬢ Used by leading technology 

companies like Google and Facebook
⬢ Can support both user local and 

remote caching for distributed teams

⬢ Build caches are complementary to dependency 

caches, not mutually exclusive:

○ A dependency cache caches fully compiled 

dependencies

○ A build cache accelerates building a single 

source repository

○ A build cache caches build actions (e.g. Gradle 

tasks or Maven goals)



What is a Build Cache?

When the inputs have not changed, the output can be reused from a previous run.

Inputs ● Gradle Tasks
● Maven Goal Executions

Outputs● Gradle Tasks
● Maven Goal Executions



Cache Key/Value Calculation
The cacheKey for Gradle Tasks/Maven Goals is based on the Inputs:

cacheKey(javaCompile) = hash(sourceFiles,  
                             jdk version,  
                             classpath,  
                             compiler args) 

The cacheEntry contains the output:

cacheEntry[cacheKey(javaCompile)] = fileTree(classFiles)

For more information, see:

https://docs.gradle.org/current/userguide/build_cache.html

https://docs.gradle.org/current/userguide/build_cache.html


When not using the build cache, with Maven any change will require a full build. For Gradle 

this is the case when doing clean builds and switching between branches.



Changing an public method in the  export-api module



Changing an implementation detail of a method in the service module



Remote Build Cache

⬢ Shared among different machines
⬢ Speeds up development for the whole team
⬢ Reuses build results among CI agents/jobs and individual developers



@BrianDemers | bdemers

reproducible-builds.org



Test distribution can make tests even faster 



How it works

   Autoscaler 



Existing solutions - CI fanout

See https://builds.gradle.org/project/Gradle for an example of this strategy

Test execution is distributed by manually partitioning the test set and then running partitions in 
parallel on several CI nodes.

pipeline {  
  stage('compile') { ... }  
  parallelStage('test') {  
    step {  
      sh './gradlew :testGroup1'  
    }  
    step {  
      sh './gradlew :testGroup2'  
    }  
    step {  
      sh './gradlew :testGroup3'  
    }  
  }  
}

https://builds.gradle.org/project/Gradle


Assessment of existing solutions

⬢ Build Caching is great in many cases but doesn’t 

help when test inputs have changed.
⬢ Single machine parallelism is limited by that 

machine’s resources.
⬢ CI fanout does not help during local 

development, is inefficient (in particular on 

ephemeral CI agents or without build cache), 

requires manual setup and test partitioning, and 

result collection/aggregation



Netflix reduced a 62-minute test cycle time down to just under 5 minutes!



Predictive Test Selection leads to greater efficiencies 



https://research.facebook.com/publications/predictive-test-selection/



Conventional Test Selection Approach 



Predictive Test Selection Approach 

3% 2%

4% 2% 98% 96%



Build Scans speeds up troubleshooting 





Without focus, problems can sneak back in…
⬢ Infrastructure changes

○ Binary management

○ Caching

○ CI agents
⬢ New annotation processors or versions of 

annotation processors
⬢ Build logic configurations settings

○ Build tool version and plugins

○ Compiler and/or Memory settings
⬢ Code refactoring
⬢ New office locations
⬢ Without observability, it is impossible to have 

a great and fast developer experience.



"You can observe a lot by just watching"
- Yogi Berra, Catcher and Philosopher



Performance Insights

Are you tracking local 
build and test times?



Is the cycle fast enough?

Is the cycle as fast as it can possibly 
be?





DPE Organizations Eliminate Avoidable Failures



DPE Organizations Track Failure Rates



Dealing with Flaky Tests

The test is flaky. What do you do now?
a. Try it again 
b. Re-run it 
c.  Re-run it again 
d. Ignore it and approve PR 
e.  All of the above



DPE Organizations Analyze Flaky Tests



All Of This Will Improve CI



DPE Will Become Standard Practice  
Because the World Should Foster Developer Joy



Questions?

Learn more & get free swag

BrianDemers
bdemers



THANKS!!


