
Understanding display.
Rachel Andrew Web Directions hover

CSS1 Recommendation
December 1996

Some things are block things
other things are inline things.

Being able to change the
value of display is
important.
We can choose the correct semantic HTML element for the job,
then use CSS to change how it looks.

Teaching CSS over the past 20
years

• Here is a block thing
• Here is an inline thing
• This is the Box Model. It is Very Important and also

kind of weird …

display

block and inline

inline

block

Block and inline
• The block dimension is the direction that paragraphs lay out

in your writing mode.
• The inline direction is the direction in which sentences run in

your writing mode.

writing-mode: vertical-rl

in
lin

e

block

Normal Flow
block and inline layout

Layout always returns to
Normal Flow
A well-structured HTML document means you are working with
the browser rather than against it.

For each element, CSS
generates zero or more boxes
as specified by that element’s
display property.

https://www.w3.org/TR/css-display-3/#intro

display: block
Creates a block-level box.

display: inline
Creates an inline-level box.

display: flex
Creates a block-level box with flex children.

Creating a Flex
Formatting Context

Formatting context
Describes the behavior of the child elements of a box.

display: flex

display: flex

justify-content: space-between

display: inline-flex

display: grid
Creates a block-level box with children participating in a grid
formatting context.

display: grid;
grid-template-columns: 1fr 2fr 2fr;

The value of display
• Changes how the box behaves among other boxes – is it

block or inline?
• Changes the behavior of the direct children – for example

they become flex items.

Two values for display
Refactoring the display specification.

display: block flex

display: inline flex

display: block grid

display: block flow

Old Value New Value(s)

block block flow
flow-root block flow-root
inline inline flow
inline-block inline flow-root
flex block flex
inline-flex inline flex
grid block grid
inline-grid inline grid

display: block flow-root
Starting over with a new formatting context for normal flow.

overflow: auto

display: block flow-root

display: inline flow-root
An inline box that creates a new formatting context.

display: inline-block

display: inline flow-root

Margins
Do not collapse through a new formatting context.

display: flow-root

display: flex

Anonymous
boxes

<p>One two three</p>

p {
display: flex;
justify-content: space-between;

}

Anonymous Boxes
Ensure that everything is in a box.

p > * {
color: rgb(74,112,122);

}

Anonymous Boxes
Fixing up the box tree.

li {
display: table-cell;
}

When Layout
Methods Collide
Changing the formatting context away from block and inline
layout, means some things no longer do what we are used to.

Floating and positioning
Taking items out of flow.

Out of flow
The floating and positioning behavior we understand is
specified for normal flow, for block and inline layout. They
behave differently, or don’t work at all in other formatting
contexts.

.box blockquote {
float: left;

}

.box {
display: grid;
grid-template-columns: 1fr 2fr

}

li {
float: left;

}

ul {
display: grid;

}

Grid and position
You can absolutely position items in a grid layout.

grid-column: 2 / 6;
grid-row: 3 / -1;

20px

100px

position: absolute;
top: 20px;
right: 100px;

display: table-cell
Anonymous boxes created to fix up the box tree do not get
generated once the item participates in a grid formatting
context.

This is all as specified
Precise details ensure that each browser does the same thing,
makes for happier web developers!

This is all testable
The Web Platform Tests project has tests against web platform
specifications, so user agents can check they are conforming.

Not Generating Boxes
display: none and display: contents

display: none
Do not generate a box for the element, or for the children of
the element.

Aside from the none value, which
also affects the aural/speech output
and interactivity of an element and
its descendants, the display
property only affects visual layout

https://www.w3.org/TR/css-display-3/#the-display-properties

display: contents
Like display: none but only the box it is applied to is removed.
The children remain.

<nav>
Home

Nav 1
Nav 2
Nav 3

</nav>

nav {
display: flex;

}

nav {
display: flex;
justify-content: space-between;

}

nav ul {
display: contents;

}

Exciting boxes!
Boxes generating boxes.

Principal Box

li:first-child {
color: white;

}

::marker

li:first-child::marker {
color: black;

}

li::marker {
content: “Step: ” counter(list-item) “: ”;

}

h1 {
display: list-item;

}

h1::marker {
content: “🥦🥦”;

}

It’s all a value
of display

Values of display do not
inherit.
They act on the principal box and its direct children; the
grandchildren go back to normal flow.

subgrid

subgrid
Allowing track definitions to be inherited by a grid on a child.

grid-template-columns: repeat(3,1fr 2fr)

grid-column: 2 / 5

grid-column: 2 / 5

grid-column: 3 / 6

grid-template-columns: subgrid

To use subgrid
First create a grid formatting context with display: grid. Then
opt in columns or rows with the subgrid value.

subgrid
The subgrid must be participating in grid layout and a grid
container itself.

Thank you!
@rachelandrew

	Understanding display.
	CSS1 Recommendation
	Slide Number 3
	Slide Number 4
	Some things are block things other things are inline things.
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Being able to change the value of display is important.
	Teaching CSS over the past 20 years
	display
	Slide Number 14
	block and inline
	Slide Number 16
	Slide Number 17
	Block and inline
	Slide Number 19
	Normal Flow
	Layout always returns to Normal Flow
	Slide Number 22
	Slide Number 23
	For each element, CSS generates zero or more boxes as specified by that element’s display property.
	display: block
	display: inline
	display: flex
	Creating a Flex Formatting Context
	Formatting context
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	display: grid
	Slide Number 35
	The value of display
	Two values for display
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	display: block flow-root
	Slide Number 44
	Slide Number 45
	Slide Number 46
	display: inline flow-root
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Margins
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Anonymous boxes
	Slide Number 57
	Slide Number 58
	Anonymous Boxes
	Slide Number 60
	Anonymous Boxes
	Slide Number 62
	When Layout Methods Collide
	Floating and positioning
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Out of flow
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Grid and position
	Slide Number 74
	Slide Number 75
	display: table-cell
	This is all as specified
	This is all testable
	Slide Number 79
	Not Generating Boxes
	display: none
	Aside from the none value, which also affects the aural/speech output and interactivity of an element and its descendants, the display property only affects visual layout
	display: contents
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Exciting boxes!
	Principal Box
	Slide Number 90
	Slide Number 91
	Slide Number 92
	::marker
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	It’s all a value of display
	Values of display do not inherit.
	subgrid
	subgrid
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	To use subgrid
	Slide Number 110
	Slide Number 111
	subgrid
	Thank you!

