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MOTIVATION 
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THE ENTERPRISE JAVA WILDERNESS 
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STEP 1: COME PREPARED 

What do I 
need to know 

to be an 
Enterprise 

Java 
developer? 
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KNOWLEDGE (1) 

Solid understanding of core Java & some specifics: 
• garbage collection strategies 
• class loading specifics 
• debugging (thread & heap dumps) 
 
Some experience with databases and middleware 
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KNOWLEDGE (2) 

Knowledge in OOP concepts and design patterns 
• Singleton, Dependency Injection, Factory, MVC … 
 
Core Java EE specs like Servlets, JPA & Components 
 
Basic Linux command line skills 
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STEP 2: BRING GEAR 

What tools 
should I be 

experienced 
in? 
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IDES & TOOLS 
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STEP 3: GET ORIENTED 

Which 
technology 

stack 
should I   
choose? 
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SPRING VS JAVA EE 
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CLIENT REQUIREMENTS 
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KNOWLEDGE REQUIREMENTS 
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PROJECT REQUIREMENTS 
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POPULAR JAVA EE SPECIFICATIONS 

ZeroTurnaround's survey of ~1700 developers 
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AND NOW WHAT? 
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STEP 4: BUILD SHELTER 

How do I 
setup the 
project? 
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BASIC SETUP (1) 

VCS:  

Build:  

CI:  
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BASIC SETUP (2) 
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ADVANCED SETUP 

1. Static code analysis  Sonar / IDE-based 
2. DB schema management  Flyway / Liquibase 
3. In-memory DB for development 
4. Easy to setup local environment 
5. Stable staging environment 
6. Continuous Delivery 
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UNIT TESTING! 

Via JUnit & Mockito / Groovy & Spock 
Caveats: 

• one-off short-term projects 
• tests treated as second class code 
• meaningless tests 
• brittle tests (white box, extensive mocking) 
• lack of strategy for test data 
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STEP 5: FIND WATER 

How do I 
implement 

the project? 
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SHOULD I USE AN ORM? 

relational 

new 

object centric 

CRUD queries 

nosql  

legacy 

data centric 

reporting queries 
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WHAT PROBLEMS CAN I EXPECT? 

"Magic" powers i.e. hidden learning curve 

Reduced control over DB  

Loss of DB specific capabilities 

Difficulty fetching necessary data 

Performance issues and locks 
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HOW TO DESIGN REST API-S? 

• Follow the REST principles  
& look at the APIs of large companies 

• Use proper HTTP verbs (GET, PUT, POST, …) 
• GET /movie/1/booking 

• Use proper HTTP status codes 
• 418 I‘m a teapot 
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HOW TO DESIGN REST API-S? (2) 

• Medium grained resources 
• up to two levels of nesting 
 

• Security: 
• HTTPS 
• OAuth2 
• BasicAuth 
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HOW TO DESIGN REST API-S? (3) 

• Proper URLs using plural nouns 
• GET /movies vs GET /getAllMovies 

 
• Spinal-case in URLs and camelCase / snake_case 

for parameters 
• http://www.penisland.net/ 
• GET /order-item/1?orderNumber=2 
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HOW TO DESIGN REST API-S? (4) 

• Consider versioning early on: 
• only major version 
• aim to have up to 2 versions in parallel 
• /v1/movies, /v2/movies 

 

• Filters & sorting via URL parameters 
• ?sort=rating,budget&director=nolan 
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HOW TO DESIGN REST API-S? (5) 

• I18n of data: 
• via Accept-Language: bg_BG 
 

• Handling of operations (i.e. non-resources) 
• POST /email/12/send 

• consider JSON-RPC 
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STEP 6: FIND FOOD 

What about 
performance? 
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WHAT PROBLEMS SHOULD I EXPECT? 

• Infrastructure issues (available resources, unreliability, latency) 

• External system communication (synchronous calls, no timeouts, 

faulty integrations) 

• Lack of middleware tuning (thread & connection pools, clusters) 

• Garbage collection (limits, strategies) 

• Bugs (synchronization issues, memory leaks) 
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HOW TO IMPROVE PERSISTENCE? 

1. Monitor query performance 
2. Review native SQL of sensitive queries 

• mark/optimize slow queries 
3. Use caching offered by ORM 
4. Beware of many‐to‐many relations & fetch types 
5. Run updates/deletes in bulk (beware of cascading) 
6. Paging & query projection 
7. Move logic to DB 



Survival guide 33   

HOW TO IMPROVE FRONT END? 

1. Track time for processing each REST request 

2. Use gzip 

3. Partial request & responses (?fields + HTTP PATCH) 

4. Cache friendly results (etag, last‐modified) 

5. Paging 
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STEP 7: STAY IN ONE PLACE VS SCOUT THE AREA 
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QUESTIONS? 
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THANK YOU 

petyo.dimitrov@musala.com 


