
Enterprise Java

Developer's

Petyo Dimitrov

handbook

Survival guide 2

AGENDA

Motivation

Steps for survival

Q&A

Survival guide 3

MOTIVATION

Survival guide 4

THE ENTERPRISE JAVA WILDERNESS

Survival guide 5

STEP 1: COME PREPARED

What do I
need to know

to be an
Enterprise

Java
developer?

Survival guide 6

KNOWLEDGE (1)

Solid understanding of core Java & some specifics:
• garbage collection strategies
• class loading specifics
• debugging (thread & heap dumps)

Some experience with databases and middleware

Survival guide 7

KNOWLEDGE (2)

Knowledge in OOP concepts and design patterns
• Singleton, Dependency Injection, Factory, MVC …

Core Java EE specs like Servlets, JPA & Components

Basic Linux command line skills

Survival guide 8

STEP 2: BRING GEAR

What tools
should I be

experienced
in?

Survival guide 9

IDES & TOOLS

Survival guide 10

STEP 3: GET ORIENTED

Which
technology

stack
should I
choose?

Survival guide 11

SPRING VS JAVA EE

Survival guide 12

CLIENT REQUIREMENTS

Survival guide 13

KNOWLEDGE REQUIREMENTS

Survival guide 14

PROJECT REQUIREMENTS

Survival guide 15

POPULAR JAVA EE SPECIFICATIONS

ZeroTurnaround's survey of ~1700 developers

Survival guide 16

AND NOW WHAT?

Survival guide 17

STEP 4: BUILD SHELTER

How do I
setup the
project?

Survival guide 18

BASIC SETUP (1)

VCS:

Build:

CI:

Survival guide 19

BASIC SETUP (2)

Survival guide 20

ADVANCED SETUP

1. Static code analysis  Sonar / IDE-based
2. DB schema management  Flyway / Liquibase
3. In-memory DB for development
4. Easy to setup local environment
5. Stable staging environment
6. Continuous Delivery

Survival guide 21

UNIT TESTING!

Via JUnit & Mockito / Groovy & Spock
Caveats:

• one-off short-term projects
• tests treated as second class code
• meaningless tests
• brittle tests (white box, extensive mocking)
• lack of strategy for test data

Survival guide 22

STEP 5: FIND WATER

How do I
implement

the project?

Survival guide 23

SHOULD I USE AN ORM?

relational

new

object centric

CRUD queries

nosql

legacy

data centric

reporting queries

Survival guide 24

WHAT PROBLEMS CAN I EXPECT?

"Magic" powers i.e. hidden learning curve

Reduced control over DB

Loss of DB specific capabilities

Difficulty fetching necessary data

Performance issues and locks

Survival guide 25

HOW TO DESIGN REST API-S?

• Follow the REST principles
& look at the APIs of large companies

• Use proper HTTP verbs (GET, PUT, POST, …)
• GET /movie/1/booking

• Use proper HTTP status codes
• 418 I‘m a teapot

Survival guide 26

HOW TO DESIGN REST API-S? (2)

• Medium grained resources
• up to two levels of nesting

• Security:
• HTTPS
• OAuth2
• BasicAuth

Survival guide 27

HOW TO DESIGN REST API-S? (3)

• Proper URLs using plural nouns
• GET /movies vs GET /getAllMovies

• Spinal-case in URLs and camelCase / snake_case

for parameters
• http://www.penisland.net/
• GET /order-item/1?orderNumber=2

Survival guide 28

HOW TO DESIGN REST API-S? (4)

• Consider versioning early on:
• only major version
• aim to have up to 2 versions in parallel
• /v1/movies, /v2/movies

• Filters & sorting via URL parameters
• ?sort=rating,budget&director=nolan

Survival guide 29

HOW TO DESIGN REST API-S? (5)

• I18n of data:
• via Accept-Language: bg_BG

• Handling of operations (i.e. non-resources)
• POST /email/12/send

• consider JSON-RPC

Survival guide 30

STEP 6: FIND FOOD

What about
performance?

Survival guide 31

WHAT PROBLEMS SHOULD I EXPECT?

• Infrastructure issues (available resources, unreliability, latency)

• External system communication (synchronous calls, no timeouts,

faulty integrations)

• Lack of middleware tuning (thread & connection pools, clusters)

• Garbage collection (limits, strategies)

• Bugs (synchronization issues, memory leaks)

Survival guide 32

HOW TO IMPROVE PERSISTENCE?

1. Monitor query performance
2. Review native SQL of sensitive queries

• mark/optimize slow queries
3. Use caching offered by ORM
4. Beware of many‐to‐many relations & fetch types
5. Run updates/deletes in bulk (beware of cascading)
6. Paging & query projection
7. Move logic to DB

Survival guide 33

HOW TO IMPROVE FRONT END?

1. Track time for processing each REST request

2. Use gzip

3. Partial request & responses (?fields + HTTP PATCH)

4. Cache friendly results (etag, last‐modified)

5. Paging

Survival guide 34

STEP 7: STAY IN ONE PLACE VS SCOUT THE AREA

Survival guide 35

QUESTIONS?

Survival guide 36

THANK YOU

petyo.dimitrov@musala.com

