
Team bi0s

Amrita Center for Cybersecurity, Amritapuri

The Art of Executing Javascript

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ Akhil Mahendra

➢ Web application security enthusiast

➢ CTFer{@teambi0s}

➢ @Akhil_Mahendra

About

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ Introduction - XSS

➢ Types of XSS and different context

➢ Same Origin Policy

➢ Content Security Policy

➢ XSS via Angular JS

Agenda

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

 Attack with a wrong name ?

Introduction

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ Still exists after 18 years !

➢ NO.7 in OWASP top 10 2017

➢ Most commonly reported security vulnerability

Introduction

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ Stealing user cookies

➢ Keylogger

➢ Deface website

➢ Redirect users

Introduction - Impact

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ Reflected XSS

➢ Stored XSS

➢ DOM based XSS

Types of XSS

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ HTML

➢ Attribute

➢ Script

➢ Style

➢ Url

Different Context

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ User input comes inside HTML elements

○ <p>Injection</p>

➢ POC

○ <script>alert(1)</script>

Different Context -html context

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ User input comes inside HTML attributes

○ <p class = ” Injection ”> </p>

○ <p Injection = ” test123 ”> </p>

➢ POC

○ “ onload=alert(1)//

○ onload=alert(1)//

Different Context -attribute context

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ User input comes inside <script> tags

○ <script> var a = ‘ Injection ‘; </script>

➢ POC

○ ‘;alert(1);//

Different Context -script context

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ User input comes inside <script> tags

○ <p style “ color: injection ” > </p>

➢ POC

○ expression(alert(1));

Different Context -style context

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ User input comes inside <script> tags

○ click

➢ POC

○ javascript:alert(1)

Different Context -url context

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ Scripts on a page can make HTTP request and process
responses between hosts that has the same:

Protocol, Hostname, Port

➢ An IFRAME loaded cannot read or write data into the page
unless it’s in the same origin !

SOP

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ Still exists after 18 years !

➢ NO.7 in OWASP top 10 2017

➢ Most commonly reported security vulnerability

SOP

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ Introduced as a mechanism to mitigate code injection

➢ Directives defines:

○ From where and what content is allowed to load

○ In which context the content is allowed to execute

➢ It’s a mitigation not first line of defense!

CSP

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ Directives:

○ default-src

○ script-src

○ object-src

○ style-src

○ image-src

○ frame-src

CSP - Directives

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ Keywords:
○ ‘*’

○ 'none'

○ 'self'

○ 'unsafe-inline'

○ 'unsafe-eval'

CSP - Keywords

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ HTTP Headers

○ <?php header('Content-Security-Policy: default-src https://cdn.example.net;

child-src 'none'; object-src 'none'"’);?>

➢ Meta tag in HTML

○ <meta http-equiv="Content-Security-Policy" content="default-src

https://cdn.example.net; child-src 'none'; object-src 'none'">

CSP

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ unsafe-inline, unsafe-eval, data:

○ whole purpose of CSP is defeated

➢ Eg: default-src: ’self’;script-src: ‘unsafe-inline’

○ Bypass : <script>alert(1)</script>

CSP - Common mistakes

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ Nonces:

○ Nonce must be a random string

○ Should not be reused

○ Should not be guessable

CSP - Common mistakes

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

➢ Examples of bad nonce

○ Request 1- D29162F1B99108DDA2406C697FFAC27586F42C7D021669F01F720CEEACBB06F5

○ Request 2- D29162F1B99108DDA2406C697FFAC27586F42C7D021669F01F720CEEACBB06F5

○ e10adc3949ba59abbe56e057f20f883e - md5(123456)

○ 1231441

CSP - Common mistakes

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

Demo

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

CSP Bypass

CSP - bypass

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

 Escaping the expression sandbox for XSS

XSS via Angular JS

Team bi0s

Amrita Center for Cybersecurity, Amritapuri

Thanks

 @Akhil_Mahendra

