
Debezium vs. the world
An overview of the CDC ecosystem

Marta Paes
Sr. Product Manager @Materialize



This is not a 🌶 talk.
Things move fast. If you notice inaccuracies, or are building a tool that could be 
featured in a future version of this talk, come around after the talk!



What we talk about when we talk about CDC
Query-based CDC

❌ Some data changes might get lost

❌ DELETE operations are not captured

❌ Trade-off: frequency vs. load on source DBs

❌ Can’t propagate schema changes



What we talk about when we talk about CDC
Query-based CDC

What if we just tapped into the transaction log?



What we talk about when we talk about CDC
Log-based CDC

✅ All data changes are captured

✅ More context on the actual changes

✅ Low propagation delay (i.e. near real time)

✅ Less taxing on the source database

Query-based CDC



Tale of the tape
Or, how it all started.



How it all started

2013

Databus (LinkedIn), 

Wormhole (Facebook),

MoSQL (Stripe)

Like most tools that are a commodity in streaming today, the first CDC systems were 

developed at internet-scale companies.



How it all started

2015

Maxwell (Zendesk), 

Bottled Water (Confluent)

2013

Databus (LinkedIn), 

Wormhole (Facebook),

MoSQL (Stripe)

Like most tools that are a commodity in streaming today, the first CDC systems were 

developed at internet-scale companies.



How it all started

2015

Maxwell (Zendesk), 

Bottled Water (Confluent)

2016

Debezium (Red Hat),

MySQL Streamer (Yelp)

2013

Databus (LinkedIn), 

Wormhole (Facebook),

MoSQL (Stripe)

Like most tools that are a commodity in streaming today, the first CDC systems were 

developed at internet-scale companies.



How it all started

2015

Maxwell (Zendesk), 

Bottled Water (Confluent)

2016

Debezium (Red Hat),

MySQL Streamer (Yelp)

2013

Databus (LinkedIn), 

Wormhole (Facebook),

MoSQL (Stripe)

2018

Spinal Tap (Airbnb)

2019

DBLog (Netflix)

Like most tools that are a commodity in streaming today, the first CDC systems were 

developed at internet-scale companies.



Where it landed

* Exactly-once support (KIP-618) will gradually roll out, starting with the PostgreSQL connector in 2.3.

The good 😚 The less good 😕
● Deployment via well-understood tools 

(Kafka + Kafka Connect).

● Standard schema for change events.

● Support for a large number of CDC 

connectors.

● At-least-once delivery guarantees*, no 

transactional consistency OOTB.

● No graceful schema evolution OOTB.

Debezium has become the standard CDC tool over time, with a strong community behind 

it. Like any tool, it has some good and some less good.



Round 1 🔔
Same same, but different.



“Have you heard about this new CDC tool?”

Myth buster 👻: you don’t need Kafka and Kafka Connect to run Debezium! You can 

embed it in your applications using the Debezium Engine, or target other sink types (e.g. 

Amazon Kinesis, Google Pub/Sub) using the Debezium Server.



Running Debezium under the hood

Flink CDC 
connectors

Confluent CDC 
connectors

Streamkap RisingWave CDC 
connectors

Tools that leverage the Debezium Engine or the Debezium Server can:

● Abstract some complexity of operating Debezium et. al from the end user.

● Enable advanced features like schema evolution using existing primitives.

Examples

Debezium



Round 2 🔔
CDC for the rest of us.



“Have you heard about streaming?”

MaterializeArtie Estuary

Tools building support for CDC from scratch can:

● Create a user experience that is tailored to long-time SQL users.

● Have more control over semantics.

Examples

Arcion
(Databricks)

HVR
(Fivetran)

Acquisitions



Decision
Debezium isn’t going anywhere…



…but there’s a whole world 
to explore!
Check out Materialize and our native PostgreSQL and MySQL CDC sources if 

you’re considering streaming SQL!


