
Structurelessness
The Tyranny of

How more meaningful code

can make your project more

resilient & maintainable

Tony Hoare, Turing Award Lecture 1980

I have regarded it as the highest goal of
programming language design to enable

good ideas to be elegantly expressed

Joseph Conrad on Archimedes Lever

Give me the right word

and the right accent

and I will move the world

Brooklyn Zelenka
@expede

Brooklyn Zelenka
@expede

• CTO at Fission — https://fission.codes

• WebNative

• Making backends obsolete 🤭

• PLT, VMs, Distributed Systems, ETH Core

• Founder of the Vancouver FP meetup

• Witchcraft, Quark, Algae, Exceptional, and others

• Exceptional (Elixir) -> Rescue (Haskell)

• Witchcraft (Elixir) <- Prelude (Haskell)

P I N G M E A N D W E ’ L L M A I L S O M E

Stickers!

This Talk is About...

This Talk is About...

• An approach to programming (broadly)

• Some observations about Elixir specifically

• A vision for the future of the ecosystem

• If you were at CodeBEAM BR, this talk generalizes some of the same ideas

Big Idea
💭 💡 🚀

This is the

One Liner
Big Idea

🛸 Work at a higher level 🔭

Language Design Reflects Intended Use
Big Idea

🌐

Who’s Org Looks Like This?
Big Idea

Who’s Org Looks Like This?
Big Idea

🧠

👨💻 👩💻 👨💻👩💻

⚙

👩💻 👨💻

Who’s Org Looks Like This?
Big Idea

🧠

👨💻 👩💻 👨💻👩💻

⚙

👩💻 👨💻

Who’s Org Looks Like This?
Big Idea

👨💻

👩💻 👨💻

👩💻 ⚙ 👩💻

👨💻

Who’s Org Looks Like This?
Big Idea

👨💻

👩💻 👨💻

👩💻 ⚙ 👩💻

👨💻

Forward Thinking
Big Idea

We want more type of features over time.  
As a result, complexity grows at an exponential rate.

How do you make Elixir code 
more flexible and easier to reason about at scale?

Do you think that the patterns we use today are 
the best possible patterns for software?

How will you write code in 2025, 2030, and 2050?

Core Evolution
Big Idea

We need to evolve our approach: 
focus on domain and structure!

Core Evolution
Big Idea

We need to evolve our approach: 
focus on domain and structure!

🚀

✨ 🦄

Structural Example: Schema Lenses
Big Idea

www.inkandswitch.com/cambria.html

In the Large
🌎

Code You Used to Write
In the Large

Imperative

Code You Used to Write
In the Large

Imperative

"Good" Elixir
In the Large

* Functional core, 
imperative shell

Imperative

"Good" Elixir
In the Large

λ

* Functional core, 
imperative shell

Imperative

3LA Future
In the Large

Imperativeλ

Imperative

3LA Future
In the Large

Imperative

Semantic DSL / OO

λ

Imperative

Prop & Model Test
In the Large Imperative

GOTO Considered Harmful
🤖😵

Edsger Dijkstra

The quality of programmers is

a decreasing function of

the density of GOTO statements

in the programs they produce

What's So Bad About Having Control? 🦶🔫
GOTO Considered Harmful

What's So Bad About Having Control? 🦶🔫
GOTO Considered Harmful

• GOTOs

What's So Bad About Having Control? 🦶🔫
GOTO Considered Harmful

• GOTOs

• Low level instruction

What's So Bad About Having Control? 🦶🔫
GOTO Considered Harmful

• GOTOs

• Low level instruction

• Literally how the machine is going to see it

What's So Bad About Having Control? 🦶🔫
GOTO Considered Harmful

• GOTOs

• Low level instruction

• Literally how the machine is going to see it

• Extremely flexible

What's So Bad About Having Control? 🦶🔫
GOTO Considered Harmful

• GOTOs

• Low level instruction

• Literally how the machine is going to see it

• Extremely flexible

• Highly concrete

What's So Bad About Having Control? 🦶🔫
GOTO Considered Harmful

• GOTOs

• Low level instruction

• Literally how the machine is going to see it

• Extremely flexible

• Highly concrete

• Huge number of implicit states

What's So Bad About Having Control? 🦶🔫
GOTO Considered Harmful

• GOTOs

• Low level instruction

• Literally how the machine is going to see it

• Extremely flexible

• Highly concrete

• Huge number of implicit states

L i n e 1

L i n e 2

L i n e 3

L i n e 4

L i n e 5 — G O T O

L i n e 6

What's So Bad About Having Control? 🦶🔫
GOTO Considered Harmful

• GOTOs

• Low level instruction

• Literally how the machine is going to see it

• Extremely flexible

• Highly concrete

• Huge number of implicit states

L i n e 1

L i n e 2

L i n e 3

L i n e 4

L i n e 5 — G O T O

L i n e 6

What's So Bad About Having Control? 🦶🔫
GOTO Considered Harmful

• GOTOs

• Low level instruction

• Literally how the machine is going to see it

• Extremely flexible

• Highly concrete

• Huge number of implicit states

L i n e 1

L i n e 2

L i n e 3

L i n e 4

L i n e 5 — G O T O

L i n e 6

What's So Bad About Having Control? 🦶🔫
GOTO Considered Harmful

• GOTOs

• Low level instruction

• Literally how the machine is going to see it

• Extremely flexible

• Highly concrete

• Huge number of implicit states

L i n e 1

L i n e 2

L i n e 3

L i n e 4

L i n e 5 — G O T O

L i n e 6

💥

Structured Programming
GOTO Considered Harmful

w h i l e

Structured Programming
GOTO Considered Harmful

• Subroutines

w h i l e

Structured Programming
GOTO Considered Harmful

• Subroutines

• Loops

w h i l e

Structured Programming
GOTO Considered Harmful

• Subroutines

• Loops

• Switch/branching w h i l e

Structured Programming
GOTO Considered Harmful

• Subroutines

• Loops

• Switch/branching

• Named routines

w h i l e

The Next Generation 🚀
GOTO Considered Harmful

The Next Generation 🚀
GOTO Considered Harmful

• Objects, Actors, Protocols

The Next Generation 🚀
GOTO Considered Harmful

• Objects, Actors, Protocols

• Map, Reduce, Filter

The Next Generation 🚀
GOTO Considered Harmful

• Objects, Actors, Protocols

• Map, Reduce, Filter

• Functor, Applicative, Monad

The Next Generation 🚀
GOTO Considered Harmful

• Objects, Actors, Protocols

• Map, Reduce, Filter

• Functor, Applicative, Monad

• Constraint Solvers

Tradeoffs
GOTO Considered Harmful

Tradeoffs
GOTO Considered Harmful

• Exchange granular control for structure

Tradeoffs
GOTO Considered Harmful

• Exchange granular control for structure

• Meaning over mechanics

Tradeoffs
GOTO Considered Harmful

• Exchange granular control for structure

• Meaning over mechanics

• More human than machine

Tradeoffs
GOTO Considered Harmful

• Exchange granular control for structure

• Meaning over mechanics

• More human than machine

• Safer!

Tradeoffs
GOTO Considered Harmful

• Exchange granular control for structure

• Meaning over mechanics

• More human than machine

• Safer!

• Spectrum

• Turing Tarpit

• Church Chasm

• Haskell Fan Fiction

250

Structured

Unstructured

GOTO Considered Harmful

Payoff

250

Structured

Unstructured

T I M E

C
O

M
P

L
E

X
IT

Y
GOTO Considered Harmful

Payoff

250

500

750

1000

Structured
Unstructured

T I M E

C
O

M
P

L
E

X
IT

Y
GOTO Considered Harmful

Payoff

250

500

750

1000

Structured
Unstructured

T I M E

C
O

M
P

L
E

X
IT

Y
GOTO Considered Harmful

Payoff

250

500

750

1000

Structured
Unstructured

T I M E

C
O

M
P

L
E

X
IT

Y
GOTO Considered Harmful

Payoff

On Complexity
🌱 🌸 🌾

Overused
On Complexity

Overused
On Complexity

The Bad Kind ☠
On Complexity

The Bad Kind ☠
On Complexity

• Probably pretty familiar with this

The Bad Kind ☠
On Complexity

• Probably pretty familiar with this

• Euphemism for:

• Complicated

• Inconsistent

• No plan

• “Unstructured mess”

The Good Kind: Deep
On Complexity

What do these have in common? (a+b)/a ~ a / b

Orthogonal Complecting
On Complexity

Orthogonal Complecting
On Complexity

Orthogonal Complecting
On Complexity

Orthogonal Complecting
On Complexity

Orthogonal Complecting
On Complexity

Orthogonal Complecting
On Complexity

Orthogonal Complecting
On Complexity

Orthogonal Complecting
On Complexity

Orthogonal Complecting
On Complexity

Orthogonal Complecting
On Complexity

Orthogonal Complecting
On Complexity

🕐

Orthogonal Complecting
On Complexity

🕐

Structures: 4

Orthogonal Complecting
On Complexity

🕐

Structures: 4
Results: effectively limitless

Complex != Complicated
On Complexity

Complex != Complicated
On Complexity

• Complex — interconnected parts

Complex != Complicated
On Complexity

• Complex — interconnected parts

• Complicated — difficult to understand

The Power of Words
Abstraction & DSLs

The Power of Words
Abstraction & DSLs

• Restrict your vocabulary to your domain

• ...the hard part is deciding on that vocabulary

The Power of Words
Abstraction & DSLs

• Restrict your vocabulary to your domain

• ...the hard part is deciding on that vocabulary

• Technical debt is lack of understanding

• https://daverupert.com/2020/11/technical-debt-as-a-lack-of-understanding/

The Actor Abyss
On Complexity

The Actor Abyss
On Complexity

• Each step is very simple

The Actor Abyss
On Complexity

• Each step is very simple

• Reasoning about dynamic organisms is hard

• Remember to (re)store your data

• e.g. crash recovery

• Called collaborator may not be there

The Actor Abyss
On Complexity

• Each step is very simple

• Reasoning about dynamic organisms is hard

• Remember to (re)store your data

• e.g. crash recovery

• Called collaborator may not be there

• Complexity grows faster than linear

The Actor Abyss
On Complexity

• Each step is very simple

• Reasoning about dynamic organisms is hard

• Remember to (re)store your data

• e.g. crash recovery

• Called collaborator may not be there

• Complexity grows faster than linear

• Find common factors — your abstraction

The Actor Abyss
On Complexity

• Each step is very simple

• Reasoning about dynamic organisms is hard

• Remember to (re)store your data

• e.g. crash recovery

• Called collaborator may not be there

• Complexity grows faster than linear

• Find common factors — your abstraction

Fighting GenSoup
🚫🍲⚔

Good Interfaces != Good Abstractions
Fighting GenSoup

Good Interfaces != Good Abstractions
Fighting GenSoup

• GenServer & co are actually pretty low level

• Please add some semantics 🙏

Good Interfaces != Good Abstractions
Fighting GenSoup

• GenServer & co are actually pretty low level

• Please add some semantics 🙏

• Don’t reinvent the wheel every time 🎡

Good Interfaces != Good Abstractions
Fighting GenSoup

• GenServer & co are actually pretty low level

• Please add some semantics 🙏

• Don’t reinvent the wheel every time 🎡

• Let’s look at a very common example

Abstraction
Fighting GenSoup

Simple Case: Map
Fighting GenSoup

Async Case: Part I (defstruct)
Fighting GenSoup

Async Case: Part II (defimpl)
Fighting GenSoup

What Did We Get?
Fighting GenSoup

What Did We Get?
Fighting GenSoup

• Common interface

What Did We Get?
Fighting GenSoup

• Common interface

• Encapsulate the detail

What Did We Get?
Fighting GenSoup

• Common interface

• Encapsulate the detail

• Don’t have to think about mechanics anymore 🙅🔧

Abstraction = Focus & Essence
Fighting GenSoup

Abstraction = Focus & Essence
Fighting GenSoup

Abstraction = Focus & Essence
Fighting GenSoup

🙈

Abstraction & DSLs
Not Getting Trapped in the Details

Commonalities
Abstraction & DSLs

Commonalities
Abstraction & DSLs

• They clearly have a similar structure

Commonalities
Abstraction & DSLs

• They clearly have a similar structure

• NOT equally expressive

• Enumerable

Commonalities
Abstraction & DSLs

• They clearly have a similar structure

• NOT equally expressive

• Enumerable

• Always converted to List

• Witchcraft.Functor

Commonalities
Abstraction & DSLs

Commonalities
Abstraction & DSLs

• Different, but also have similar structure

• Not very pipeable because 2 paths

• …lots of duplicate code

Commonalities
Abstraction & DSLs

• Different, but also have similar structure

• Not very pipeable because 2 paths

• …lots of duplicate code

• Why limit to only to two ways?

Commonalities
Abstraction & DSLs

• Different, but also have similar structure

• Not very pipeable because 2 paths

• …lots of duplicate code

• Why limit to only to two ways?

Commonalities
Abstraction & DSLs

• Different, but also have similar structure

• Not very pipeable because 2 paths

• …lots of duplicate code

• Why limit to only to two ways?

Start From Rules 📋
Abstraction & DSLs

Start From Rules 📋
Abstraction & DSLs

• Describe what the overall solution looks like

Start From Rules 📋
Abstraction & DSLs

• Describe what the overall solution looks like

• Choose how it gets run contextually

2-Phase
Abstraction & DSLs

2-Phase
Abstraction & DSLs

• Always a two-phase process

2-Phase
Abstraction & DSLs

• Always a two-phase process

• Abstract, then concrete

2-Phase
Abstraction & DSLs

• Always a two-phase process

• Abstract, then concrete

• Do concretion at application boundary

2-Phase
Abstraction & DSLs

• Always a two-phase process

• Abstract, then concrete

• Do concretion at application boundary

2-Phase
Abstraction & DSLs

• Always a two-phase process

• Abstract, then concrete

• Do concretion at application boundary

Improving Kernel
Abstraction & DSLs

Improving Kernel
Abstraction & DSLs

• Fallback keys

Improving Kernel
Abstraction & DSLs

• Fallback keys

• Bang-functions

Improving Kernel with Fallback Keys
Abstraction & DSLs

Improving Kernel with Fallback Keys
Abstraction & DSLs

• Insight:

• Composition is at the heart of modularity

• Orthogonality is at the heart of composition

Improving Kernel with Fallback Keys
Abstraction & DSLs

• Insight:

• Composition is at the heart of modularity

• Orthogonality is at the heart of composition

• Let’s abstract default values!

• More focused (does one thing)

• More general (works everywhere)

• Ad hoc function extension

Improving Kernel with Fallback Keys
Abstraction & DSLs

• Insight:

• Composition is at the heart of modularity

• Orthogonality is at the heart of composition

• Let’s abstract default values!

• More focused (does one thing)

• More general (works everywhere)

• Ad hoc function extension

Improving Kernel with Fallback Keys
Abstraction & DSLs

• Insight:

• Composition is at the heart of modularity

• Orthogonality is at the heart of composition

• Let’s abstract default values!

• More focused (does one thing)

• More general (works everywhere)

• Ad hoc function extension

Improving Kernel with Fallback Keys
Abstraction & DSLs

• Insight:

• Composition is at the heart of modularity

• Orthogonality is at the heart of composition

• Let’s abstract default values!

• More focused (does one thing)

• More general (works everywhere)

• Ad hoc function extension

Improving Kernel with Fallback Keys
Abstraction & DSLs

• Insight:

• Composition is at the heart of modularity

• Orthogonality is at the heart of composition

• Let’s abstract default values!

• More focused (does one thing)

• More general (works everywhere)

• Ad hoc function extension

Improving Kernel with Fallback Keys
Abstraction & DSLs

• Insight:

• Composition is at the heart of modularity

• Orthogonality is at the heart of composition

• Let’s abstract default values!

• More focused (does one thing)

• More general (works everywhere)

• Ad hoc function extension

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/*

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/*

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/*

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/*

💣

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/*

💣

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/* 💣

💣

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/* 💣

💣

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/* 💣

⏩

🆗

💣

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/* 💣

💣

⏩

🆗

💣

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/* 💣

💣

⏩

🆗

💣 Works everywhere

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/* 💣

💣

⏩

🆗

💣 Works everywhere

Any data

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/* 💣

💣

⏩

🆗

💣 Works everywhere

Any data

Any exception struct

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/* 💣

💣

⏩

🆗

💣 Works everywhere

Any data

Any exception struct

Your choice o flow (e.g. pipes!)

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/* 💣

💣

⏩

🆗

💣 Works everywhere

Any data

Any exception struct

Your choice o flow (e.g. pipes!)

Super easy to test

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/* 💣

💣

⏩

🆗

💣 Works everywhere

Any data

Any exception struct

Your choice o flow (e.g. pipes!)

Super easy to test

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/* 💣

💣

⏩

🆗

💣 Works everywhere

Any data

Any exception struct

Your choice o flow (e.g. pipes!)

Super easy to test

BONUS

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/* 💣

💣

⏩

🆗

💣 Works everywhere

Any data

Any exception struct

Your choice o flow (e.g. pipes!)

Super easy to test

BONUS
Fix nil blindness,

Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/* 💣

💣

⏩

🆗

💣 Works everywhere

Any data

Any exception struct

Your choice o flow (e.g. pipes!)

Super easy to test

BONUS
Fix nil blindness,

the "billion dollar mistake"

A Note on Metaphor
Abstraction & DSLs

A Note on Metaphor
Abstraction & DSLs

• Concept: Flow-ability is very core to Elixir’s ethos

• Kernel.|>/2

A Note on Metaphor
Abstraction & DSLs

• Concept: Flow-ability is very core to Elixir’s ethos

• Kernel.|>/2

• Consistent flow metaphor / punning on existing metaphor

• Exceptional: ~>/2 and >>>/2

Because it’s easier now

A Note on Metaphor
Abstraction & DSLs

• Concept: Flow-ability is very core to Elixir’s ethos

• Kernel.|>/2

• Consistent flow metaphor / punning on existing metaphor

• Exceptional: ~>/2 and >>>/2

Because it’s easier now

A Note on Metaphor
Abstraction & DSLs

• Concept: Flow-ability is very core to Elixir’s ethos

• Kernel.|>/2

• Consistent flow metaphor / punning on existing metaphor

• Exceptional: ~>/2 and >>>/2

Because it’s easier now

A Note on Metaphor
Abstraction & DSLs

• Concept: Flow-ability is very core to Elixir’s ethos

• Kernel.|>/2

• Consistent flow metaphor / punning on existing metaphor

• Exceptional: ~>/2 and >>>/2

Because it’s easier now

A Note on Metaphor
Abstraction & DSLs

• Concept: Flow-ability is very core to Elixir’s ethos

• Kernel.|>/2

• Consistent flow metaphor / punning on existing metaphor

• Exceptional: ~>/2 and >>>/2

Because it’s easier now

What's Gained
Abstraction & DSLs

What's Gained
Abstraction & DSLs

• Clear

What's Gained
Abstraction & DSLs

• Clear

• Composable

What's Gained
Abstraction & DSLs

• Clear

• Composable

• Greater reuse ♻

What's Gained
Abstraction & DSLs

• Clear

• Composable

• Greater reuse ♻

• User choice

What's Gained
Abstraction & DSLs

• Clear

• Composable

• Greater reuse ♻

• User choice

• Increased testability

• Simple example: is_exception?/1

What's Gained
Abstraction & DSLs

• Clear

• Composable

• Greater reuse ♻

• User choice

• Increased testability

• Simple example: is_exception?/1

• Could still add protocol to get even more power

Storytelling 📖
Abstraction & DSLs

Storytelling 📖
Abstraction & DSLs

• Your code read like a story

Storytelling 📖
Abstraction & DSLs

• Your code read like a story

• We even see this in high-level goals of (e.g.) Phoenix

Storytelling 📖
Abstraction & DSLs

• Your code read like a story

• We even see this in high-level goals of (e.g.) Phoenix

• Go make some DSLs!

How to Eat the Elephant 🍴
Abstraction & DSLs

How to Eat the Elephant 🍴
Abstraction & DSLs

• By feature?

How to Eat the Elephant 🍴
Abstraction & DSLs

• By feature?

• By behaviour?

How to Eat the Elephant 🍴
Abstraction & DSLs

• By feature?

• By behaviour?

• By structure / properties!

Intermission Puzzle
🧩

What Do The Following Have In Common?
Intermission Puzzle

What Do The Following Have In Common?
Intermission Puzzle

• Async/await (or Task, if you prefer)

What Do The Following Have In Common?
Intermission Puzzle

• Async/await (or Task, if you prefer)

• throw/catch

What Do The Following Have In Common?
Intermission Puzzle

• Async/await (or Task, if you prefer)

• throw/catch

• with blocks

What Do The Following Have In Common?
Intermission Puzzle

• Async/await (or Task, if you prefer)

• throw/catch

• with blocks

• SQL queries — LINQ

What Do The Following Have In Common?
Intermission Puzzle

• Async/await (or Task, if you prefer)

• throw/catch

• with blocks

• SQL queries — LINQ

• JSON parsing

What Do The Following Have In Common?
Intermission Puzzle

• Async/await (or Task, if you prefer)

• throw/catch

• with blocks

• SQL queries — LINQ

• JSON parsing

• "Warm fuzzy thing"

Structure
One of these things is like all the others

There Are Only Three Right Answers
Structure

21 3

There Are Only Three Right Answers
Structure

21 3

Associativity
Structure

Associativity
Structure

• Not a data structure

Associativity
Structure

• Not a data structure

• Not a function

Associativity
Structure

• Not a data structure

• Not a function

• An interface & rules!

Associativity
Structure

• Not a data structure

• Not a function

• An interface & rules!

(Note the flow metaphor)

A Semigroup On...
Structure

A Semigroup On...
Structure

An Unlawful Counterexample 🚨
Structure

How to Enforce Properties
Structure

How to Enforce Properties
Structure

• A structure of structures

• Keep it in your brain

• Manually prop test

• Enforce with TypeClass

Wild

🦁

Let's Do Something

(Power Up Pipes)

Explicit Assumptions
Power Up

Explicit Assumptions
Power Up

• Parallel pipes!

• Concurrency = partial order

• Monotonic

• All loops must be linearized

Explicit Assumptions
Power Up

• Parallel pipes!

• Concurrency = partial order

• Monotonic

• All loops must be linearized

• Properties

• Serial composition

• Parallel composition

• Explicit evaluation strategy

Explicit Assumptions
Power Up

• Parallel pipes!

• Concurrency = partial order

• Monotonic

• All loops must be linearized

• Properties

• Serial composition

• Parallel composition

• Explicit evaluation strategy

t

Explicit Assumptions
Power Up

• Parallel pipes!

• Concurrency = partial order

• Monotonic

• All loops must be linearized

• Properties

• Serial composition

• Parallel composition

• Explicit evaluation strategy

t

Explicit Assumptions
Power Up

• Parallel pipes!

• Concurrency = partial order

• Monotonic

• All loops must be linearized

• Properties

• Serial composition

• Parallel composition

• Explicit evaluation strategy

t

Explicit Assumptions
Power Up

• Parallel pipes!

• Concurrency = partial order

• Monotonic

• All loops must be linearized

• Properties

• Serial composition

• Parallel composition

• Explicit evaluation strategy

t

Pipes++
Power Up

Pipes++
Power Up

Pipes++
Power Up

Pipes++
Power Up

How?!
Power Up

How?!
Power Up

Cleanup
Power Up

Cleanup
Power Up

Carrier Data
Power Up

Carrier Data
Power Up

Carrier Data
Power Up

Carrier Data
Power Up

Carrier Data
Power Up

Carrier Data
Power Up

Base Case
Power Up

Base Case
Power Up

Base Case
Power Up

Async
Power Up

Async
Power Up

Async
Power Up

Async
Power Up

Upshot
Power Up

Upshot
Power Up

• Higher semantic density (meaning > mechanics)

Upshot
Power Up

• Higher semantic density (meaning > mechanics)

• Declarative, configurable data flow 🤯

Upshot
Power Up

• Higher semantic density (meaning > mechanics)

• Declarative, configurable data flow 🤯

• Extremely extensible

• defimpl Dataflow, for: %Stream{}

• defimpl Dataflow, for: %Distributed{}

• defimpl Dataflow, for: %Broadway{}

Upshot
Power Up

• Higher semantic density (meaning > mechanics)

• Declarative, configurable data flow 🤯

• Extremely extensible

• defimpl Dataflow, for: %Stream{}

• defimpl Dataflow, for: %Distributed{}

• defimpl Dataflow, for: %Broadway{}

• Model-testable

Upshot
Power Up

• Higher semantic density (meaning > mechanics)

• Declarative, configurable data flow 🤯

• Extremely extensible

• defimpl Dataflow, for: %Stream{}

• defimpl Dataflow, for: %Distributed{}

• defimpl Dataflow, for: %Broadway{}

• Model-testable

• Composable with other pipes and change evaluation strategies

Rob Pike, 5 Rules of Programming

Data dominates. If you've chosen the right
data structures and organized things well, the
algorithms will almost always be self-evident.

Data structures, not algorithms,

are central to programming.

Libraries
A Call for

Summary
A Call for Libraries

Summary
A Call for Libraries

• Can plug into / extend

Summary
A Call for Libraries

• Can plug into / extend

• Single-threaded context

Summary
A Call for Libraries

• Can plug into / extend

• Single-threaded context

• Distributed context

Summary
A Call for Libraries

• Can plug into / extend

• Single-threaded context

• Distributed context

• Dynamic hybrid contexts

Extend Railroad Programming
A Call for Libraries

Extend Railroad Programming
A Call for Libraries

Happy Path (Continue)

Error Case (Skip)

No Effect (Afterwards)

Extend Railroad Programming
A Call for Libraries

Happy Path (Continue)

Error Case (Skip)

No Effect (Afterwards)

Extend Railroad Programming
A Call for Libraries

Happy Path (Continue)

Error Case (Skip)

No Effect (Afterwards)

Surprising Number of Factors
A Call for Libraries

Surprising Number of Factors
A Call for Libraries

Log

Program

Surprising Number of Factors
A Call for Libraries

Log

Program

Summary

Keep In Mind...
Summary

Keep In Mind...
Summary

• Protocols-for-DDD

Keep In Mind...
Summary

• Protocols-for-DDD

• Add a semantic layer

Keep In Mind...
Summary

• Protocols-for-DDD

• Add a semantic layer

• How do you locally test your distributed system? Look at the properties!

Keep In Mind...
Summary

• Protocols-for-DDD

• Add a semantic layer

• How do you locally test your distributed system? Look at the properties!

• Under which conditions does your code work? What are your assumptions?

Keep In Mind...
Summary

• Protocols-for-DDD

• Add a semantic layer

• How do you locally test your distributed system? Look at the properties!

• Under which conditions does your code work? What are your assumptions?

• Prop testing is useful for structured abstractions

Keep In Mind...
Summary

• Protocols-for-DDD

• Add a semantic layer

• How do you locally test your distributed system? Look at the properties!

• Under which conditions does your code work? What are your assumptions?

• Prop testing is useful for structured abstractions

• You should be able to code half-asleep

🇧🇷 Thank You, Elixir Brasil 🎉
b r o o k l y n @ f i s s i o n . c o d e s

g i t h u b . c o m /e x p e d e

@ e x p e d e

h t t p s : / / f i s s i o n . c o d e s

h t t p s : / / t a l k . f i s s i o n . c o d e s

h t t p s : / / t o o l s . f i s s i o n . c o d e s

S W E E T S P O T S 🍭
L I B R A R Y P R I N C I P L E S 📚 G E N E R A L I T Y

S W E E T S P O T S 🍭

Generality

• Low information

• Few assumptions

• Many use cases

L I B R A R Y P R I N C I P L E S 📚 G E N E R A L I T Y

S W E E T S P O T S 🍭

Generality

• Low information

• Few assumptions

• Many use cases

Power

• High information

• Can make many assumptions

• Tailored to few use cases

L I B R A R Y P R I N C I P L E S 📚 G E N E R A L I T Y

S W E E T S P O T S 🍭

Generality

• Low information

• Few assumptions

• Many use cases

Power

• High information

• Can make many assumptions

• Tailored to few use cases

P O W E R 🚀G E N E R A L I T Y 🌏 ⚖

L I B R A R Y P R I N C I P L E S 📚 G E N E R A L I T Y

S W E E T S P O T S 🍭

Generality

• Low information

• Few assumptions

• Many use cases

Power

• High information

• Can make many assumptions

• Tailored to few use cases

P O W E R 🚀G E N E R A L I T Y 🌏 ⚖

L I B R A R Y P R I N C I P L E S 📚 G E N E R A L I T Y

S W E E T S P O T S 🍭

Generality

• Low information

• Few assumptions

• Many use cases

Power

• High information

• Can make many assumptions

• Tailored to few use cases

P O W E R 🚀G E N E R A L I T Y 🌏 ⚖

Enum

L I B R A R Y P R I N C I P L E S 📚 G E N E R A L I T Y

S W E E T S P O T S 🍭

Generality

• Low information

• Few assumptions

• Many use cases

Power

• High information

• Can make many assumptions

• Tailored to few use cases

P O W E R 🚀G E N E R A L I T Y 🌏 ⚖

Enum Ecto.Schema

L I B R A R Y P R I N C I P L E S 📚 G E N E R A L I T Y

S W E E T S P O T S 🍭

Generality

• Low information

• Few assumptions

• Many use cases

Power

• High information

• Can make many assumptions

• Tailored to few use cases

P O W E R 🚀G E N E R A L I T Y 🌏 ⚖

Enum Ecto.Schema
GenServer

L I B R A R Y P R I N C I P L E S 📚 G E N E R A L I T Y

S W E E T S P O T S 🍭

Generality

• Low information

• Few assumptions

• Many use cases

Power

• High information

• Can make many assumptions

• Tailored to few use cases

P O W E R 🚀G E N E R A L I T Y 🌏 ⚖

Enum Ecto.Schema

Libraries Applications

GenServer

L I B R A R Y P R I N C I P L E S 📚 G E N E R A L I T Y

