
Structurelessness
The Tyranny of

How more meaningful code

can make your project more


resilient & maintainable



Tony Hoare, Turing Award Lecture 1980

I have regarded it as the highest goal of 
programming language design to enable 

good ideas to be elegantly expressed



Joseph Conrad on Archimedes Lever

Give me the right word

and the right accent 


and I will move the world
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Brooklyn Zelenka
@expede

• CTO at Fission — https://fission.codes


• WebNative


• Making backends obsolete 🤭


• PLT, VMs, Distributed Systems, ETH Core


• Founder of the Vancouver FP meetup


• Witchcraft, Quark, Algae, Exceptional, and others


• Exceptional (Elixir) -> Rescue (Haskell)


• Witchcraft (Elixir) <- Prelude (Haskell)





P I N G  M E  A N D  W E ’ L L  M A I L  S O M E

Stickers!
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This Talk is About...

• An approach to programming (broadly)


• Some observations about Elixir specifically


• A vision for the future of the ecosystem


• If you were at CodeBEAM BR, this talk generalizes some of the same ideas
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This is the



One Liner
Big Idea

🛸 Work at a higher level 🔭 



Language Design Reflects Intended Use
Big Idea

🌐
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Forward Thinking
Big Idea

We want more type of features over time.  
As a result, complexity grows at an exponential rate.


How do you make Elixir code 
more flexible and easier to reason about at scale?


Do you think that the patterns we use today are 
the best possible patterns for software?


How will you write code in 2025, 2030, and 2050?
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Core Evolution
Big Idea

We need to evolve our approach: 
focus on domain and structure!

🚀

✨ 🦄



Structural Example: Schema Lenses
Big Idea

www.inkandswitch.com/cambria.html



In the Large
🌎 
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* Functional core, 
imperative shell

Imperative
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3LA Future
In the Large

Imperative

Semantic DSL / OO

λ

Imperative



Prop & Model Test
In the Large Imperative



GOTO Considered Harmful
🤖😵 



Edsger Dijkstra

The quality of programmers is 

a decreasing function of 


the density of GOTO statements 

in the programs they produce
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What's So Bad About Having Control? 🦶🔫 
GOTO Considered Harmful

• GOTOs

• Low level instruction

• Literally how the machine is going to see it

• Extremely flexible

• Highly concrete

• Huge number of implicit states

L i n e  1

L i n e  2

L i n e  3

L i n e  4

L i n e  5  —  G O T O

L i n e  6

💥
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Structured Programming
GOTO Considered Harmful

• Subroutines

• Loops

• Switch/branching

• Named routines

w h i l e
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The Next Generation 🚀 
GOTO Considered Harmful

• Objects, Actors, Protocols

• Map, Reduce, Filter

• Functor, Applicative, Monad

• Constraint Solvers
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GOTO Considered Harmful

• Exchange granular control for structure

• Meaning over mechanics

• More human than machine

• Safer!

• Spectrum


• Turing Tarpit 


• Church Chasm 


• Haskell Fan Fiction
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The Bad Kind ☠
On Complexity

• Probably pretty familiar with this

• Euphemism for:


• Complicated


• Inconsistent


• No plan


• “Unstructured mess”



The Good Kind: Deep
On Complexity

What do these have in common? (a+b)/a ~ a / b
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Orthogonal Complecting
On Complexity

🕐

Structures: 4
Results: effectively limitless
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Complex != Complicated
On Complexity

• Complex — interconnected parts

• Complicated — difficult to understand
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The Power of Words
Abstraction & DSLs

• Restrict your vocabulary to your domain


• ...the hard part is deciding on that vocabulary

• Technical debt is lack of understanding


• https://daverupert.com/2020/11/technical-debt-as-a-lack-of-understanding/
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• Complexity grows faster than linear
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Good Interfaces != Good Abstractions
Fighting GenSoup

• GenServer & co are actually pretty low level


• Please add some semantics 🙏 

• Don’t reinvent the wheel every time 🎡

• Let’s look at a very common example
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Simple Case: Map
Fighting GenSoup



Async Case: Part I (defstruct)
Fighting GenSoup



Async Case: Part II (defimpl)
Fighting GenSoup
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What Did We Get?
Fighting GenSoup

• Common interface

• Encapsulate the detail

• Don’t have to think about mechanics anymore 🙅🔧
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Abstraction = Focus & Essence
Fighting GenSoup

🙈



Abstraction & DSLs
Not Getting Trapped in the Details
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Commonalities
Abstraction & DSLs

• They clearly have a similar structure

• NOT equally expressive


• Enumerable

• Always converted to List


• Witchcraft.Functor
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• …lots of duplicate code
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Start From Rules 📋 
Abstraction & DSLs

• Describe what the overall solution looks like

• Choose how it gets run contextually
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Improving Kernel
Abstraction & DSLs

• Fallback keys

• Bang-functions
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Improving Kernel with(out?) Bang Functions
Abstraction & DSLs

Get foo!/* from foo/* 💣

💣

⏩

🆗

💣 Works everywhere

Any data

Any exception struct

Your choice o flow (e.g. pipes!)

Super easy to test

BONUS
Fix nil blindness,

the "billion dollar mistake"
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What's Gained
Abstraction & DSLs

• Clear

• Composable

• Greater reuse ♻

• User choice

• Increased testability


• Simple example: is_exception?/1

• Could still add protocol to get even more power



Storytelling 📖 
Abstraction & DSLs



Storytelling 📖 
Abstraction & DSLs

• Your code read like a story



Storytelling 📖 
Abstraction & DSLs

• Your code read like a story

• We even see this in high-level goals of (e.g.) Phoenix



Storytelling 📖 
Abstraction & DSLs

• Your code read like a story

• We even see this in high-level goals of (e.g.) Phoenix

• Go make some DSLs!
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How to Eat the Elephant 🍴
Abstraction & DSLs

• By feature?

• By behaviour?

• By structure / properties!
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What Do The Following Have In Common?
Intermission Puzzle

• Async/await (or Task, if you prefer)

• throw/catch

• with blocks

• SQL queries — LINQ

• JSON parsing

• "Warm fuzzy thing"



Structure
One of these things is like all the others
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Associativity
Structure

• Not a data structure

• Not a function

• An interface & rules!

(Note the flow metaphor)
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An Unlawful Counterexample 🚨 
Structure
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How to Enforce Properties
Structure

• A structure of structures


• Keep it in your brain


• Manually prop test


• Enforce with TypeClass



Wild

🦁

Let's Do Something

(Power Up Pipes)
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• Parallel pipes!


• Concurrency = partial order


• Monotonic 


• All loops must be linearized

• Properties


• Serial composition


• Parallel composition


• Explicit evaluation strategy

t
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Upshot
Power Up

• Higher semantic density (meaning > mechanics)

• Declarative, configurable data flow 🤯

• Extremely extensible


• defimpl Dataflow, for: %Stream{}


• defimpl Dataflow, for: %Distributed{}


• defimpl Dataflow, for: %Broadway{}

• Model-testable

• Composable with other pipes and change evaluation strategies



Rob Pike, 5 Rules of Programming

Data dominates. If you've chosen the right 
data structures and organized things well, the 
algorithms will almost always be self-evident.


Data structures, not algorithms,

are central to programming.
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Summary
A Call for Libraries

• Can plug into / extend

• Single-threaded context

• Distributed context

• Dynamic hybrid contexts
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Keep In Mind...
Summary

• Protocols-for-DDD

• Add a semantic layer

• How do you locally test your distributed system? Look at the properties!

• Under which conditions does your code work? What are your assumptions?

• Prop testing is useful for structured abstractions

• You should be able to code half-asleep



🇧🇷 Thank You, Elixir Brasil 🎉 
b r o o k l y n @ f i s s i o n . c o d e s 


g i t h u b . c o m /e x p e d e 

@ e x p e d e

h t t p s : / / f i s s i o n . c o d e s 

h t t p s : / / t a l k . f i s s i o n . c o d e s 


h t t p s : / / t o o l s . f i s s i o n . c o d e s
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• High information


• Can make many assumptions


• Tailored to few use cases
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Enum Ecto.Schema

Libraries Applications

GenServer
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