
Horacio Gonzalez
@LostInBrittany

Stencil 101
Introduction to a web components library like no other

Who are we?
Introducing myself and

introducing OVH OVHcloud

Horacio Gonzalez

@LostInBrittany
Spaniard lost in Brittany,
developer, dreamer and
all-around geek

Flutter

OVHcloud: A Global Leader

Own
20Tbps
Netwok

with
35 PoPs

> 1.3M Customers in 138 Countries

Hosting capacity :
1.3M Physical

Servers

360k
Servers already

deployed

30 Datacenters 1 Dedicated IaaS
Europe

200k Private cloud
VMs running

OVHcloud: Our solutions

Cloud
Web
Hosting

▪ Dedicated Server

▪ Data Storage

▪ Network and

Security

▪ Licences

Mobile
Hosting Telecom

 VoIP

SMS/Fax

Virtual desktop

Cloud Storage

Over the Box

 Containers

 Compute

 Database

 Object Storage

Securities

 Messaging

VPS

Public Cloud

Private Cloud

Serveur dédié

Cloud Desktop

Hybrid Cloud

Domain names

 Email

 CDN

Web hosting

MS Office

 MS solutions

The 3 minutes context
What the heck are web component?

Web Components

Web standard W3C

Web Components

Available in all modern browsers:
Firefox, Safari, Chrome

Web Components

Create your own HTML tags
Encapsulating look and behavior

Web Components

Fully interoperable
With other web components, with any framework

SHADOW DOM TEMPLATESCUSTOM ELEMENTS

Web Components

 To define your own HTML tag

Custom Element

<body>

 ...

 <script>

window.customElements.define('my-element',

class extends HTMLElement {...});

 </script>

 <my-element></my-element>

</body>

To encapsulate subtree and
style in an element

Shadow DOM

<button>Hello, world!</button>

<script>

var host = document.querySelector('button');

const shadowRoot = host.attachShadow({mode:'open'});

shadowRoot.textContent = 'こんにちは、影の世界!';

</script>

To have clonable document template

Template

<template id="mytemplate">

 <div class="comment"></div>

</template>

var t = document.querySelector('#mytemplate');

// Populate the src at runtime.

t.content.querySelector('img').src = 'logo.png';

var clone = document.importNode(t.content, true);

document.body.appendChild(clone);

But in fact, it’s just an element…

● Attributes

● Properties

● Methods

● Events

Aren't the multiple Web
Components libs a sign of failure?

If the standard worked, people
would use Vanilla, wouldn't them?

Web component standard is low level

At it should be!

Standard exposes an API to:
○ Define elements
○ Encapsulate DOM

Standard == basic bricks

Libraries are helpers

They give you higher-level primitives

Different high-level primitives

Each one tailored to a use

Sharing the same base

High-performant, low-level, in-the-platform
web components standard

Libraries aren't a failure of standard

They happen by design

Stencil
Powering Ionic 4+

Not another library

A Web Component toolchain

A mature technology

Ionic 4 released on year ago, powered by Stencil!

A build time tool

To generate standard web components

Fully featured
● Web Component-based

● Asynchronous rendering pipeline

● TypeScript support

● Reactive Data Binding

● Component pre-rendering

● Simple component lazy-loading

● JSX support

● Dependency-free components

And the cherry on the cake

Server-Side Rendering

Stencil leverages the web platform

Working with the web, not against it

The Stencil story
A company tired of putting good code in the bin

Once upon a time there was a fight

Between native apps and web app on mobile

A quest to the perfect solution

Hybrid apps, leveraging on web technologies

A company wanted to do it well

The perfect technology for mobile web and hybrid apps

The time is 2013

So what technology would you use?

Really soon after launch...

Hey folks, we are killing AngularJS!

What did Ionic people do?

Let's put everything in the trash bin and begin anew

But timed have changed...

In 2013 Angular JS was the prom queen

Times have changed...

In 2017 Angular is only one more in the clique

Angular limits adoption of Ionic

Devs and companies are
very vocal about JS Frameworks

What did Ionic people do?

Let's put everything in the trash bin and begin anew…
But on which framework?

What about web components?

A nice solution for Ionic problems:
Any framework, even no framework at all!

But what Web Component library?

There were so many of them!

SkateJS

Let's do something different

A fully featured web component toolchain
With all the bells and whistles!

Ionic rewrote all their code again

Ionic 4 is fully based on Ionic

Now Ionic works on any framework

Or without framework at all

And we have Stencil

To use it in any of our projects

Hey dude, enough stories!
We are here to see some code!

Simply use npm init

Choose the type of project to start

Hands on Stencil

npm init stencil

? Pick a starter › - Use arrow-keys. Return to submit.

❯ ionic-pwa Everything you need to build fast, production ready PWAs
 app Minimal starter for building a Stencil app or website

 component Collection of web components that can be used anywhere

Updating Stencil

And the project is initialized in some seconds!

Hands on Stencil

✔ Pick a starter › component
✔ Project name › sthlm-j
✔ All setup in 17 ms

 $ npm start
 Starts the development server.
 $ npm run build
 Builds your components/app in production mode.
 $ npm test
 Starts the test runner.

 We suggest that you begin by typing:
 $ cd sthlm-js
 $ npm start

 Happy coding! 🎈

Starting the development server
npm start

Let's look at the code

Some concepts

Decorators

import { Component, Prop, h } from '@stencil/core';
import { format } from '../../utils/utils';

@Component({
 tag: 'my-component',
 styleUrl: 'my-component.css',
 shadow: true
})
export class MyComponent {

 @Prop() first: string;

Some concepts

Properties and States

 @Prop() first: string;

 @Prop() middle: string;

 @Prop() last: string;

 @State() nickname: string;

Some concepts

Asynchronous rendering using JSX

 render() {
 return <div>Hello, World! I'm {this.getText()}</div>;
 }

Some concepts

Watch

 @Prop() value: number;

 @Watch(value)
 valueChanged(newValue: boolean, oldValue: boolean) {
 console.log(`The new value is ${newValue}, it was ${oldValue} before`);
 }

Some concepts

Emitting events

Listening to events

 @Event() actionCompleted: EventEmitter;

 someAction(message: String) {
 this.actionCompleted.emit(message);
 }

 @Listen('actionCompleted')
 actionCompletedHandler(event: CustomEvent) {
 console.log('Received the custom actionCompleted event: ', event.detail);
 }

Some concepts

Asynchronous public methods

 @Method()
 async sayHello() {
 this.hello = true;
 }

 render() {
 return (
 <Host>
 <h2>{ this.hello ? `Hello sthlm.js` : ''}</h2>
 </Host>
);
 }

Some concepts

Optional Shadow DOM

@Component({
 tag: 'my-component',
 styleUrl: 'my-component.css',
 shadow: true
})
export class MyComponent {

Stencil for design systems
Because web components really shine for that

What the heck is a design system?

Why Stencil is so good for design
systems?

Web Components work everywhere!

One more thing…*
Let's copy from the master

Stencil is not so important

WebComponents ARE

WebComponents ARE native

Use the Platform, Luke...

Oh yeah, we all do

Do you love your framework?

Like until death…

Would you marry your framework?

Do you remember when you dropped AngularJS for Angular?

How much does cost the divorce?

Reuse the bricks in your new framework

Why recode everything again?

For different need and sensibilities

Lots of web components libraries

LitElement

SkateJS

Frameworks begin to understand it

And some good news

Angular Elements Vue Web Component
Wrapper

Choose a framework, no problem…

But please, help your future self

Use Web Components!

So for your next app

Conclusion
That's all, folks!

