
How to understand CSS
@rachelandrew

If you work in web development
learning CSS is not optional.

Revisit the things you already know

function MM_reloadPage(init) { //reloads the window if Nav4 resized
if (init==true) with (navigator) {if ((appName=="Netscape")&&(parseIn

t(appVersion)==4)) {
document.MM_pgW=innerWidth; document.MM_pgH=innerHeight; onresize=MM_reloadPage; }}

else if (innerWidth!=document.MM_pgW || innerHeight!=document.MM_pgH) location.reload()
;
}
MM_reloadPage(true);

It’s true! Some things in CSS have weird names,
strange casing, and odd rules.

We can’t break the web

Naming things is hard

Writing Modes
A writing-mode agnostic way of working.

Inline

Block

Block

Inline

Block start

Block end

Inline start Inline end

Web layout is tied to physical dimensions
We think in top, right, bottom, left, width, height.

.example {
width: 600px;
height: 300px;

}

Height

Width

Logical Properties & Values
Mapping the physical to the flow-relative.

.example {
inline-size: 600px;
block-size: 300px;

}

inline-size

block-size

.example {
padding-top: 10px;
padding-right: 2em;
margin-bottom: 2em;

}

.example {
padding-block-start: 10px;
padding-inline-end: 2em;
margin-block-end: 2em;

}

Physical vs. Logical

Block and inline, start and end

Initial Values
Every property has a value.

.example {
display: flex;

}

Normal flow
Block and inline layout

Formatting contexts
Switching from block to flex or grid.

.example {
display: flex;

}

.example {
display: grid;
grid-template-columns: 1fr 1fr 1fr;

}

Changing the value of display changes the formatting
context of the direct children of the element.
Inside those children we return to normal flow.

Generated content
The strange world of ::before and ::after

::before and ::after are pseudo-elements
They use two colons :: to distinguish them from pseudo-classes (one colon).

In the past they were defined with one
colon :before and :after.
So browsers maintain that syntax for backwards compatibility.

::before and ::after add a
first and last child
Before the other children and after the other children of the element.

.example {
display: grid;

}

.example::before {
content: "";
background-color: #1981a1;

}

.example::after {
content: "";
background-color: #1f0945;

}

h1 {
display: grid;
grid-template-columns: 1fr auto 1fr;
gap: 1em;

}

h1::before, h1::after {
content: "";
align-self: center;
border-bottom: 2px solid #1f0945;

}

Busting out of flow
Position and float

display: flow-root
Creates a new Block Formatting Context

.box {
background-color: rgb(43,91,128);
display: flow-root;

}

Margin collapsing
The rules around combining margins.

Margins collapse in the block direction
For example, between paragraphs.

Margins only collapse on items participating in a
block formatting context.
Flex and Grid items do not collapse margins.

Adjacent children
The margin-bottom of a paragraph will combine with the margin-top of a following
paragraph.

Completely empty boxes.
The top and bottom margin will combine.

First and last child and parent
The margin on these children can be combined with the margin on their parent.

Box Alignment
https://drafts.csswg.org/css-align/

Aligning in the block and inline dimensions

Distribution of space and
alignment of items within their space

Inline start

Block start

justify-content
In grid, inline space distribution between tracks.

.example {
justify-content: space-between;

}

.example {
justify-content: space-between;

}

align-content
In Grid, block dimension space distribution between tracks

.example {
align-content: end;

}

In flexbox, we justify on the main axis and
align on the cross axis

Justify-content
In flex layout, main axis space distribution between flex items

.example {
justify-content: flex-end;

}

align-content
In flex layout, cross-axis space distribution between lines

.example {
align-content: space-around;

}

For –content properties to do anything, you
must have spare space to distribute!

Aligning items inside their areas

.example {
justify-self: end;
align-self: end;

}

.example {
justify-items: end;
align-items: end;

}

”

“
[justify-self] does not apply to flex items, because
there is more than one item in the main axis.”

https://drafts.csswg.org/css-align/#justify-flex

.example {
align-self: center;

}

justify-

• Main axis alignment in flexbox (the direction of flex-direction)

• Flexbox only supports justify-content (not justify–items or justify–self)

• Inline axis alignment in grid

align-

• Cross axis alignment in flexbox

• Block axis alignment in grid

-content

• Space distribution between flex items or grid tracks

• No spare space and these properties do nothing

-items, -self

• Alignment within the grid area

• Alignment against other flex items on the cross axis

Box sizing
https://drafts.csswg.org/css-sizing-3/

What about the Box Model?
Isn’t there a rule that anyone talking about CSS must show a box model diagram?

When we had to control the size of each item in
a layout, the Box Model was very important.

What is the inline-size or width of the
box?
By default, the content-box

If you want your specified width to
include padding and border…
… set the box-sizing property to border-box.

.example {
box-sizing: border-box;

}

In the past everything was a length or a
percentage.

What is the minimum and maximum size of
this thing

Any content-based sizing is worked out based
on these min and max content sizes.

.example {
display: flex;

}

.example {
display: flex;

}

.example > * {
flex: auto;

}

.example {
display: flex;

}

.example > * {
flex: auto;

}

.example {
display: flex;

}

.example > * {
flex: 1;

}

.example {
display: grid;
grid-template-columns: auto auto auto;

}

Do not be afraid of the specifications!
Interesting information lives there.

Thank you!
@rachelandrew

	How to understand CSS
	If you work in web development �learning CSS is not optional.
	Revisit the things you already know
	Slide Number 4
	It’s true! Some things in CSS have weird names, strange casing, and odd rules.
	We can’t break the web
	Slide Number 7
	Naming things is hard
	Writing Modes
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Web layout is tied to physical dimensions
	Slide Number 14
	Slide Number 15
	Logical Properties & Values
	Slide Number 17
	Slide Number 18
	Physical vs. Logical
	Block and inline, start and end
	Initial Values
	Slide Number 22
	Slide Number 23
	Normal flow
	Slide Number 25
	Formatting contexts
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Changing the value of display changes the formatting context of the direct children of the element.
	Slide Number 31
	Generated content
	::before and ::after are pseudo-elements
	In the past they were defined with one colon :before and :after.
	::before and ::after add a �first and last child
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Busting out of flow
	Slide Number 43
	display: flow-root
	Slide Number 45
	Slide Number 46
	Margin collapsing
	Margins collapse in the block direction
	Margins only collapse on items participating in a block formatting context.
	Adjacent children
	Slide Number 51
	Completely empty boxes.
	Slide Number 53
	Slide Number 54
	First and last child and parent
	Slide Number 56
	Slide Number 57
	Box Alignment
	Aligning in the block and inline dimensions
	Distribution of space and �alignment of items within their space
	Slide Number 61
	justify-content
	Slide Number 63
	Slide Number 64
	align-content
	Slide Number 66
	In flexbox, we justify on the main axis and align on the cross axis
	Justify-content
	Slide Number 69
	align-content
	Slide Number 71
	For –content properties to do anything, you must have spare space to distribute!
	Aligning items inside their areas
	Slide Number 74
	Slide Number 75
	Slide Number 76
	[justify-self] does not apply to flex items, because there is more than one item in the main axis.”
	Slide Number 78
	justify-
	align-
	-content
	-items, -self
	Box sizing
	What about the Box Model?
	When we had to control the size of each item in a layout, the Box Model was very important.
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	What is the inline-size or width of the box?
	If you want your specified width to include padding and border…
	Slide Number 93
	In the past everything was a length or a percentage.
	What is the minimum and maximum size of this thing
	Slide Number 96
	Any content-based sizing is worked out based on these min and max content sizes.
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Do not be afraid of the specifications!
	Slide Number 104
	Thank you!

