How to understand CSS

@rachelandrew

If you work in web development
learning CSS is not optional.

Revisit the things you already know

function MM reloadPage(init) { //reloads the window if Nav4 resized
if (init==true) with (navigator) {if ((appName=="Netscape")&& (parseln
t(appVersion)==4)) {
document.MM _pgW=innerWidth; document.MM pgH=innerHeight; onresize=MM reloadPage; }}
else if (innerWidth!=document.MM _pgW || innerHeight!=document.MM pgH) location.reload()

}
MM _reloadPage(true);

It’s true! Some things in CSS have weird names,
strange casing, and odd rules.

We can’t break the web

{ Incomplete List of Mistakes in th- X

C & https://wiki.csswg.org/ideas/mistakes w "g ® o 3 :

Home | Specs Ideas Testing About Search

You are here: CSS Working Group Wiki » Ideas and Resolutions » Incomplete List of Mistakes in the Design of CSS

Incomplete List of Mistakes in the Design of CSS

That should be corrected if anyone invents a time machine. :P

= white-space: nowrap should be white-space: no-wrap
= and line wrapping behavior should not have been added to white-space
= vertical-align should not apply to table cells. Instead the CSS3 alignment properties should exist in Level 1.

= vertical-align: middle should be text-middle or x-middle because it's not really in the middle, and such a name
would better describes what it does.

Percentage heights should be calculated against fill-available rather than being undefined in auto situations.

Table layout should be sane.

Box-sizing should be border-box by default.
= background-size with one value should duplicate its value, not default the second one to auto. Ditto translate().

= background-position and border-spacing (all 2-axis properties) should take *vertical* first, to match with the 4-direction
properties like margin.

Not quite a mistake, because it was a reasonable default for the 90s, but it would be more helpful since then if
"background-repeat’ defaulted to "no-repeat’.

= The 4-value shorthands like margin should go counter-clockwise (so that the inline-start value is before the block-start
value).

= z-index should be called z-order or depth and should Just Work on all elements (like it does on flex items).

word-wrap/overflow-wrap should not exist. Instead, overflow-wrap should be a keyword on 'white-space’, like nowrap
(no-wrap).

The top and bottom margins of a single box should never have been allowed to collapse together automatically as this is
the root of all margin-collapsing evil.

Partial collapsing of margins instead of weird rules to handle min/max-heights?

Tables (like other non-blocks, e.g. flex containers) should form pseudo-stacking contexts.

= The currentColor keyword should have retained the dash, current-color, as originally specified. Likewise all other color
multi-word keyword names.

= There should have been a predictable color naming system (like CNS) instead of the arbitrary X11 names which were
eventually adopted.

= border-radius should have been corner-radius.

Absolutely-positioned replaced elements should stretch when opposite offset properties (e.g. left+right) are set, instead of
being start-aligned.

= The hyphens property should be called hyphenate. (It's called hyphens because the XSL:FO people objected to
hyphenate.)

= rgba() and hsla() should not exist, rgb() and hs1() should have gotten an optional fourth parameter instead (and the
alpha value should have used the same format as R, G, and B or S and L).

= descendant combinator should have been » and indirect sibling combinator should have been ++, so there's some logical
relationships among the selectors’ ascii art

= the *-blend-mode properties should've just been *-blend

= lInicode rannee chniild not have had a ecenarate micrnevntay with their own tokenization or token handlina The

Naming things is hard

Writing Modes

A writing-mode agnostic way of working.

Veggies es bonus vobis, proinde vos postulo essum magis kohlrabi welsh onion
daikon amaranth tatsoi tomatillo melon azuki bean garlic.

Gumbo beet greens corn soko endive gumbo gourd. Parsley shallot courgette
tatsoi pea sprouts fava bean collard greens dandelion okra wakame tomato.
Dandelion cucumber earthnut pea peanut soko zucchini.

Block Turnip greens yarrow ricebean rutabaga endive cauliflower sea lettuce kohlrabi
amaranth water spinach avocado daikon napa cabbage asparagus winter purslane
kale.

Celery potato scallion desert raisin horseradish spinach carrot soko. Lotus root
water spinach fennel kombu maize bamboo shoot green bean swiss chard seakale

pumpkin onion chickpea gram corn pea. Brussels sprout coriander water chestnut
gourd swiss chard wakame kohlrabi beetroot carrot watercress. Corn amaranth
salsify bunya nuts nori azuki bean chickweed potato bell pepper artichoke.

—

Inline

Veggies es bonus vobis, proinde vos postulo essum magis
kohlrabi welsh onion daikon amaranth tatsoi tomatillo melon
azuki bean garlic.

Gumbo beet greens corn soko endive gumbo gourd. Parsley
shallot courgette tatsoi pea sprouts fava bean collard greens
dandelion okra wakame tomato. Dandelion cucumber
earthnut pea peanut soko zucchini.

Turnip greens yarrow ricebean rutabaga endive cauliflower
sea lettuce kohlrabi amaranth water spinach avocado daikon
napa cabbage asparagus winter purslane kale.

Celery potato scallion desert raisin horseradish spinach

carrot soko. Lotus root water spinach fennel kombu maize
bamboo shoot green bean swiss chard seakale pumpkin
onion chickpea gram corn pea. Brussels sprout coriander
water chestnut gourd swiss chard wakame kohlrabi beetroot
carrot watercress. Corn amaranth salsify bunya nuts nori
azuki bean chickweed potato bell pepper artichoke.

nnc‘

Block

Inline start

Block start

Veggies es bonus vobis, proinde vos postulo essum magis kohlrabi welsh onion
daikon amaranth tatsoi tomatillo melon azuki bean garlic.

Gumbo beet greens corn soko endive gumbo gourd. Parsley shallot courgette
tatsoi pea sprouts fava bean collard greens dandelion okra wakame tomato.
Dandelion cucumber earthnut pea peanut soko zucchini.

Turnip greens yarrow ricebean rutabaga endive cauliflower sea lettuce kohlrabi
amaranth water spinach avocado daikon napa cabbage asparagus winter purslane
kale.

Inline end

Celery potato scallion desert raisin horseradish spinach carrot soko. Lotus root
water spinach fennel kombu maize bamboo shoot green bean swiss chard seakale

pumpkin onion chickpea gram corn pea. Brussels sprout coriander water chestnut
gourd swiss chard wakame kohlrabi beetroot carrot watercress. Corn amaranth
salsify bunya nuts nori azuki bean chickweed potato bell pepper artichoke.

Block end

Web layout is tied to physical dimensions
We think in top, right, bottom, left, width, height.

ltem Three

ltem Four

.example {
width: 600px;
height: 300px;

}

ltem
One

Height I

Width

Logical Properties & Values
Mapping the physical to the flow-relative

.example {
inline-size: 600px;
block-size: 300px;

}

ltem One

ltem Four

I

inline-size

ltem Two

ltem Three

block-size

Physical vs. Logical

.example { .example {
padding-top: 10px; padding-block-start: 10px;
padding-right: 2em; padding-inline-end: 2em;
margin-bottom: 2em; margin-block-end: 2em;

¥

Block and inline, start and end

Initial Values

Every property nas a value

ltem One ltem Two ltem Three

.example {
display: flex;
¥

u flex-direction - CSS: Cascading 5 X

&« C @ https://developer.mozilla.org/en-US/docs/Web/CSS/flex-direction Y "B ® O R e

VI N O U T O I Iy VY A W, S UGS IS 1 U O A I T U T

- Understanding Success Criterion 1.3.2 | W3C Understanding WCAG 2.0 @

Formal definition

Initial value row
Applies to flex containers
Inherited no

Computed value as specified

Animation type discrete

Formal syntax

row | row-reverse | column | column-reverse

Examples

Reversing flex container columns and rows

HTML

<h4>This is a Column-Reverse</h4>

<div id="content">
<div class="box" style="background-color:red;">A</div>
<div class="box" style="background-color:lightblue;">B</div>
<div class="box" style="background-color:yellow;">C</div>

</div>

<h4>This is a Row-Reverse</h4> v

Normal flow

Block and inline layout

Just some HTML and content

Veggies es bonus vobis, proinde vos postulo essum magis kohlrabi welsh onion daikon amaranth tatsoi
tomatillo melon azuki bean garlic.

Gumbo beet greens corn soko endive gumbo gourd. Parsley shallot courgette tatso1 pea sprouts fava bean
collard greens dandelion okra wakame tomato. Dandelion cucumber earthnut pea peanut soko zucchini.

Turnip greens yarrow ricebean rutabaga endive cauliflower sea lettuce kohlrabi amaranth water spinach
avocado daikon napa cabbage asparagus winter purslane kale.

Formatting contexts

Switching from block to flex or grid.

ltem One

[tem Two

[tem Three

ltem One ltem Two ltem Three

.example {
display: flex;
¥

ltem One ltem Two ltem Three

.example {
display: grid;
grid-template-columns: 1fr 1fr 1fr;

Changing the value of display changes the formatting
context of the direct children of the element.

INside those children we return to normal flow.

ltem Three

Paragraph 1.
Paragraph 2.

Generated content

The strange world of :before and :after

::before and ::after are pseudo-elements

They use two colons :: to distinguish them from pseudo-classes (one colon).

In the past they were defined with one
colon :before and :after.

S0 browsers maintain that syntax for backwards compatibility.

::before and ::after add a
first and last child

Before the other children and after the other children of the element.

ltem One

.example {
display: grid;
}

.example: :before {

content: ;
background-color: #1981al;

¥

.example::after {

content: ;
background-color: #110945;

¥

[tem One

hl {
display: grid;
grid-template-columns: 1fr auto 1fr;
gap: lem;

¥

hl::before, hl::after {
content: "";
align-self: center;

border-bottom: 2px solid #1f0945;
}

This is my heading

The heading uses a grid and generated content to create the lines either side.

9

L)

U

This is my heading

he heading uses a grid and generated content to create the lines either side.

(4

Busting out of flow

Position and float

Veggies es bonus vobis, proinde
vos postulo essum magis
kohlrabi welsh onion daikon

amaranth tatsoi tomatillo melon
azuki bean garlic.

Gumbo beet greens corn soko
endive gumbo gourd. Parsley
shallot courgette tatsoi pea sprouts
fava bean collard greens dandelion
okra wakame tomato. Dandelion
cucumber earthnut pea peanut
soko zucchini.

Turnip greens yarrow ricebean

rutabaga endive cauliflower sea
lettuce kohlrabi.

display: flow-root

Creates a new Block Formatting Context

.box {
background-color: rgb(43,91,128);
display: flow-root;

¥

Veggies es bonus vobis, proinde
vos postulo essum magis
kohlrabi welsh onion daikon
amaranth tatsoi tomatillo melon
azuki bean garlic.

Gumbo beet greens corn soko endive gumbo gourd. Parsley shallot courgette tatsoi
pea sprouts fava bean collard greens dandelion okra wakame tomato. Dandelion
cucumber earthnut pea peanut soko zucchini.

Turnip greens yarrow ricebean rutabaga endive cauliflower sea lettuce kohlrabi.

Margin collapsing

The rules around combining margins.

Margins collapse in the block direction

For example, between paragraphns.

Margins only collapse on items participating in a
block formatting context.

Flex and Grid items do not collapse margins.

Adjacent children

The margin-pottom of a paragraph will combine with the margin-top of a following
oaragrapn.

- margin-bottom: 50px;

margin-top: 20px; margin-bottom: 20px;

margin-top: 3em; margin-bottom: 3em:;

Completely empty boxes.

The top and bottom margin will combine.

Another box

A box

Another box

First and last child and parent

The margin on these children can be combined with the margin on thelr parent.

ltem 1

div.box 760x22.86

ltem 3

div.box 758 x22.86

Box Alignment
nttps.//drafts.csswg.org/css-align/

Aligning in the block and inline dimensions

Distribution of space and
alignment of items within their space

Block start

ltem One ltem Three

ltem Four

Inline start

justify-content

In grid, inline space distribution between tracks.

ltem One ltem Three

ltem Four

.example {
justify-content: space-between;

}

ltem One ltem Three

ltem Four

.example {
justify-content: space-between;

}

align-content

In Grid, block dimension space distribution between tracks

ltem One ltem Three

ltem Four

.example {
align-content: end;

}

In flexbox, we justify on the main axis and
align on the cross axis

Justify-content

In flex layout, main axis space distribution between flex items

[tem One ltem Two ltem Three

.example {
justify-content: flex-end;

}

align-content

In flex layout, cross-axis space distribution between lines

ltem One ltem Two ltem Three ltem Four

ltem Five ltem Six

.example {
align-content: space-around;

}

For —content properties to do anything, you
must have spare space to distribute!

Aligning items inside their areas

b

ltem Two

Item One

ltem Three ltem Four

.example {
justify-self: end;
align-self: end;

}

[tem One

ltem Three ltem Four ltem Two

.example {
justify-items: end;
align-items: end;

}

{

[justify-self] does not apply to flex items, because
there is more than one item in the main axis.”

7)

nttps.//drafts.csswg.org/css-align/#justify-flex

ltem Two ltem Three

[tem One

.example {
align-self: center;

¥

justify-

« Main axis alignment in flexbox (the direction of flex-direction)

« Flexbox only supports justify-content (not justify-items or justify-self)

* Inline axis alignment in grid

align-

« Cross axis alignment in flexoox

« Block axis alignment in grid

-content

« Space distribution between flex items or grid tracks

« No spare space and these properties do nothing

-items, -self

« Alignment within the grid area

« Alignment against other flex items on the cross axis

Box sizing
nttps./ /drafts.csswg.org/css-sizing-3/

What about the Box Model?

Isn't there a rule that anyone talking about C55 must show a box model diagram?

When we had to control the size of each item in
a layout, the Box Model was very important.

| am a box with content

| am a box with content

¥ Box Model

margin e

| am a box with content

¥ Box Model

margin e

border

padding

500x31.2

| am a box with content

¥ Box Model

margin e

border
padding

5eex31.2

| am a box with content

¥ Box Model

margin 48

border
30

padding

500x31.2

3e

What is the inline-size or width of the
box?

By default, the content-box

If you want your specified width to
include padding and border...

. set the box-sizing property to border-box

.example {
box-sizing: border-box;

¥

In the past everything was a length or a
percentage.

What is the minimum and maximum size of
this thing

ltem Two

ltem Four Item Four ltem Four

Any content-based sizing is worked out based
on these min and max content sizes.

ltem One ltem Two ltem Three

.example {
display: flex;
}

ltem One ltem Two ltem Three

.example {
display: flex;
}

.example > * {
flex: auto;

¥

ltem Three Iltem Three Iltem Three ltem Three ltem

Three

.example {
display: flex;
}

.example > * {
flex: auto;

[tem One ltem Two ltem Three Item Three
ltem Three Item Three

ltem Three

.example {
display: flex;
}

.example > * {
flex: 1;

[tem One ltem Two ltem Three Iltem Three Iltem Three ltem Three ltem

Three

.example {
display: grid;
grid-template-columns: auto auto auto;

¥

Do not be afraid of the specifications!

Interesting information lives there,

Researching a Property in the C¢ X

< C @ https://24ways.org/2018/researching-a-property-in-the-css-specifications/

24 WAYS

14 December 2018

Published in Code

1 comment

* eSO @

AVERRVAN

Researching a Property in the CSS Specifications

Rachel Andrew

| frequently joke that I’'m “reading the specs so you don’t have to”, as | unpack
some detail of a CSS specin a post on my blog, some documentation for MDN,
or an article on Smashing Magazine. However waiting for someone like me to
write an article about something is a pretty slow way to get the information you
need. Sometimes people like me get things wrong, or specifications change
after we write a tutorial.

What if you could just look it up yourself? That’s what you get when you learn to read
the CSS specifications, and in this article my aim is to give you the basic details you
need to grab quick information about any CSS property detailed in the CSS specs.

Where are the CSS Specifications?

The easiest way to see all of the CSS specs is to take a look at the Current Work page in
the CSS section of the W3C Website. Here you can see all of the specifications listed,
the level they are at and their status. There is also a link to the specification from this
page. I explained CSS Levels in my article Why there is no CSS 4.

Thank you!

@rachelandrew

	How to understand CSS
	If you work in web development �learning CSS is not optional.
	Revisit the things you already know
	Slide Number 4
	It’s true! Some things in CSS have weird names, strange casing, and odd rules.
	We can’t break the web
	Slide Number 7
	Naming things is hard
	Writing Modes
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Web layout is tied to physical dimensions
	Slide Number 14
	Slide Number 15
	Logical Properties & Values
	Slide Number 17
	Slide Number 18
	Physical vs. Logical
	Block and inline, start and end
	Initial Values
	Slide Number 22
	Slide Number 23
	Normal flow
	Slide Number 25
	Formatting contexts
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Changing the value of display changes the formatting context of the direct children of the element.
	Slide Number 31
	Generated content
	::before and ::after are pseudo-elements
	In the past they were defined with one colon :before and :after.
	::before and ::after add a �first and last child
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Busting out of flow
	Slide Number 43
	display: flow-root
	Slide Number 45
	Slide Number 46
	Margin collapsing
	Margins collapse in the block direction
	Margins only collapse on items participating in a block formatting context.
	Adjacent children
	Slide Number 51
	Completely empty boxes.
	Slide Number 53
	Slide Number 54
	First and last child and parent
	Slide Number 56
	Slide Number 57
	Box Alignment
	Aligning in the block and inline dimensions
	Distribution of space and �alignment of items within their space
	Slide Number 61
	justify-content
	Slide Number 63
	Slide Number 64
	align-content
	Slide Number 66
	In flexbox, we justify on the main axis and align on the cross axis
	Justify-content
	Slide Number 69
	align-content
	Slide Number 71
	For –content properties to do anything, you must have spare space to distribute!
	Aligning items inside their areas
	Slide Number 74
	Slide Number 75
	Slide Number 76
	[justify-self] does not apply to flex items, because there is more than one item in the main axis.”
	Slide Number 78
	justify-
	align-
	-content
	-items, -self
	Box sizing
	What about the Box Model?
	When we had to control the size of each item in a layout, the Box Model was very important.
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	What is the inline-size or width of the box?
	If you want your specified width to include padding and border…
	Slide Number 93
	In the past everything was a length or a percentage.
	What is the minimum and maximum size of this thing
	Slide Number 96
	Any content-based sizing is worked out based on these min and max content sizes.
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Do not be afraid of the specifications!
	Slide Number 104
	Thank you!

