
revo.jsTrent Willis

Testing your
testing strategy

revo.jsTrent Willis

Testing your
testing strategy

> cd existing-product

revo.jsTrent Willis

Testing your
testing strategy

> cd existing-product
> init new-product

revo.jsTrent Willis

Testing your
testing strategy

> cd existing-product
> init new-product
> npm test

revo.jsTrent Willis

Testing your
testing strategy

> cd existing-product
> init new-product
> npm test
Running...

revo.jsTrent Willis

Testing your
testing strategy

“Why do I need to write tests when I might have
to rewrite them in a few weeks anyway?

revo.jsTrent Willis

Testing your
testing strategy

“This approach worked for the other project. We
can’t ship features without tests!

revo.jsTrent Willis

Testing your
testing strategy

revo.jsTrent Willis

Testing your
testing strategy

Rethinking

revo.jsTrent Willis

Testing your
testing strategy

Trent Willis
Staff Software Engineer, Netflix
Former QUnit project lead
@trentmwillis

revo.jsTrent Willis

Testing your
testing strategy

Expectation vs. Reality of Testing

revo.jsTrent Willis

Testing your
testing strategy

Many applications remain under-tested*
even though testing is widely regarded
as a best practice
*according to their authors

revo.jsTrent Willis

Testing your
testing strategy

Why testing feels inefficient

revo.jsTrent Willis

Testing your
testing strategy

Why testing feels inefficient:
1. Unnecessarily high expectations

revo.jsTrent Willis

Testing your
testing strategy

Popular testing wisdom advocates for
multi-layered approaches for all projects

revo.jsTrent Willis

Testing your
testing strategy

There is an (over)abundance of testing options

revo.jsTrent Willis

Testing your
testing strategy

Why testing feels inefficient:
1. Unnecessarily high expectations
2. Underdeveloped skills

revo.jsTrent Willis

Testing your
testing strategy

Learning to write good (i.e., efficient and helpful)
tests is a skill that must be developed

revo.jsTrent Willis

Testing your
testing strategy

Why testing feels inefficient:
1. Unnecessarily high expectations
2. Underdeveloped skills
3. Unhelpful tests

revo.jsTrent Willis

Testing your
testing strategy

const submitButton = screen.getByText('Submit');

expect(submitButton)
 .not.toHaveAttribute(‘disabled');

// Oops, submitButton is not <button>!
// So the test never fails!

revo.jsTrent Willis

Testing your
testing strategy

Why testing feels inefficient:
1. Unnecessarily high expectations
2. Underdeveloped skills
3. Unhelpful tests

revo.jsTrent Willis

Testing your
testing strategy

The value of testing is in quality not quantity

revo.jsTrent Willis

Testing your
testing strategy

How do you create a valuable
testing strategy?

revo.jsTrent Willis

Testing your
testing strategy

Start by defining your goals

revo.jsTrent Willis

Testing your
testing strategy

Requirements met

revo.jsTrent Willis

Testing your
testing strategy

Time

revo.jsTrent Willis

Testing your
testing strategy

The best way to not break an application is to
not change it, but we change software to make
it better

revo.jsTrent Willis

Testing your
testing strategy

vs. ConfidenceIteration Speed

revo.jsTrent Willis

Testing your
testing strategy

C
on

fid
en

ce

Iteration Speed

“Move fast and break things”

“No deploy Fridays”

revo.jsTrent Willis

Testing your
testing strategy

C
on

fid
en

ce

Time Spent On Testing

revo.jsTrent Willis

Testing your
testing strategy

The goal of a testing strategy should be to
optimize the amount of confidence you get for
the time you invest in testing

revo.jsTrent Willis

Testing your
testing strategy

How much confidence do
you need?

revo.jsTrent Willis

Testing your
testing strategy

How much confidence do you need?
1. What stage of development are you in?
2. What are your users’ expectations?
3. What are the market expectations?

revo.jsTrent Willis

Testing your
testing strategy

How much confidence do you need?
1. What stage of development are you in?
2. What are your users’ expectations?
3. What are the market expectations?

revo.jsTrent Willis

Testing your
testing strategy

As a product “matures”, you need more confidence

revo.jsTrent Willis

Testing your
testing strategy

Your confidence level should mirror your
confidence that requirements are stable

revo.jsTrent Willis

Testing your
testing strategy

How much confidence do you need?
1. What stage of development are you in?
2. What are your users’ expectations?
3. What are the market expectations?

revo.jsTrent Willis

Testing your
testing strategy

The cost to access and criticality of a product are
directly related to how much confidence you need

revo.jsTrent Willis

Testing your
testing strategy

You can codify user expectations with
service-level agreements (SLAs)

revo.jsTrent Willis

Testing your
testing strategy

How much confidence do you need?
1. What stage of development are you in?
2. What are your users’ expectations?
3. What are the market expectations?

revo.jsTrent Willis

Testing your
testing strategy

Good understanding of your product market
expectations avoids over- or under-investing in
your testing strategy

revo.jsTrent Willis

Testing your
testing strategy

Example
Early development stage +
Low user expectations +
New market space =
Iteration Speed > Confidence

revo.jsTrent Willis

Testing your
testing strategy

Evaluate your options for
building confidence

revo.jsTrent Willis

Testing your
testing strategy

Non-Testing Options

revo.jsTrent Willis

Testing your
testing strategy

Non-Testing Options
Static Analysis

Linting
Type checking

revo.jsTrent Willis

Testing your
testing strategy

Non-Testing Options
Static Analysis
Ideological Changes

Reduce size + complexity
Encapsulation
SOLID (Single Responsibility)
Presentational + Container

revo.jsTrent Willis

Testing your
testing strategy

Non-Testing Options
Static Analysis
Ideological Changes
Processes

Code reviews
Easy + fast deployments
Canaries / AB Tests
Observability + monitoring

revo.jsTrent Willis

Testing your
testing strategy

Non-Testing Options
Static Analysis
Ideological Changes
Processes

revo.jsTrent Willis

Testing your
testing strategy

Non-Testing Options can build confidence without
significantly impacting iteration speed,
especially with changing requirements

revo.jsTrent Willis

Testing your
testing strategy

“Actual” Tests
Unit, end-to-end, integration, smoke, acceptance,
regression, functional, behavioral, etc.

revo.jsTrent Willis

Testing your
testing strategy

Tests that validate a user flow end-to-end
Tests that validate an isolated unit of functionality

revo.jsTrent Willis

Testing your
testing strategy

end-to-end tests unit tests

revo.jsTrent Willis

Testing your
testing strategy

unit testsend-to-end tests
Mimic user flow
Complicated, slow, flakey
Confidence a user flow works

revo.jsTrent Willis

Testing your
testing strategy

end-to-end tests
Mimic user flow
Complicated, slow, flakey
Confidence a user flow works

unit tests
Isolated functionality

Simple, fast, stable
No guarantee user

flow works

revo.jsTrent Willis

Testing your
testing strategy

unit tests
Isolated functionality

Simple, fast, stable
No guarantee user

flow works

end-to-end tests
Mimic user flow
Complicated, slow, flakey
Confidence a user flow works

revo.jsTrent Willis

Testing your
testing strategy

Ideally, end-to-end tests are more valuable
Really, unit tests are often a better value

revo.jsTrent Willis

Testing your
testing strategy

Doing one or the other well is better than
doing both poorly

revo.jsTrent Willis

Testing your
testing strategy

Valuable tests are those that catch issues

revo.jsTrent Willis

Testing your
testing strategy

C
on

fid
en

ce

Time Investment

Unit Tests

Non-Testing

End-to-End Tests

100%

revo.jsTrent Willis

Testing your
testing strategy

Put it all together

revo.jsTrent Willis

Testing your
testing strategy

Iteration Speed > Confidence
What can you do within the time constraints?

revo.jsTrent Willis

Testing your
testing strategy

Ex: Barely enough time to deliver product as-is
Static analysis (linting + type checking)
Processes (fast deployments)
Add unit/end-to-end tests later

revo.jsTrent Willis

Testing your
testing strategy

Ex: In between Alpha and Beta phases
Ideological changes (refactor monolithic modules)
Add unit tests for complex data logic

revo.jsTrent Willis

Testing your
testing strategy

Confidence > Iteration Speed
What options give us the confidence needed?

revo.jsTrent Willis

Testing your
testing strategy

Ex: Read-only app
End-to-end (visual regression) tests
Static analysis (linting + type checking)

revo.jsTrent Willis

Testing your
testing strategy

Ex: Highly configurable dashboard app
Unit tests (covering every option)
End-to-end tests (for basic combinations of options)
Ideological changes (small modules)
Processes (fast deployments, code reviews)
Static analysis (linting + type checking)

revo.jsTrent Willis

Testing your
testing strategy

Balance your time investment with the level of
confidence you need at a given period in time

revo.jsTrent Willis

Testing your
testing strategy

Strategy should be revisited periodically

revo.jsTrent Willis

Testing your
testing strategy

Your mix of choices can/should change over time

revo.jsTrent Willis

Testing your
testing strategy

TL;DL (Too Long; Didn’t Listen)

revo.jsTrent Willis

Testing your
testing strategy

TL;DL (Too Long; Didn’t Listen)
Define your goals
Evaluate your options
Make choices based on your goals

revo.jsTrent Willis

Testing your
testing strategy

A custom testing strategy
benefits your users, company,
and team

revo.jsTrent Willis

Testing your
testing strategy

You don’t need to reinvent the
wheel, but you also don’t need to
use the same wheels as
everyone else

