
revo.jsTrent Willis

Testing your 
testing strategy



revo.jsTrent Willis

Testing your 
testing strategy
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> cd existing-product 
>  init new-product
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> cd existing-product 
> init new-product 
>  npm test
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> cd existing-product
> init new-product
> npm test
Running...
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“Why do I need to write tests when I might have 
to rewrite them in a few weeks anyway?
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“This approach worked for the other project. We 
can’t ship features without tests!



revo.jsTrent Willis

Testing your 
testing strategy



revo.jsTrent Willis

Testing your 
testing strategy

Rethinking
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Expectation vs. Reality of Testing
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Many applications remain under-tested* 
even though testing is widely regarded 
as a best practice
*according to their authors



revo.jsTrent Willis

Testing your 
testing strategy

Why testing feels inefficient
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Why testing feels inefficient: 
1. Unnecessarily high expectations
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Popular testing wisdom advocates for 
multi-layered approaches for all projects
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There is an (over)abundance of testing options
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Why testing feels inefficient: 
1. Unnecessarily high expectations 
2. Underdeveloped skills
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Learning to write good (i.e., efficient and helpful) 
tests is a skill that must be developed
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Why testing feels inefficient: 
1. Unnecessarily high expectations 
2. Underdeveloped skills 
3. Unhelpful tests
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const submitButton = screen.getByText('Submit');

expect(submitButton)
  .not.toHaveAttribute(‘disabled');

// Oops, submitButton is <span> not <button>!
// So the test never fails!
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Why testing feels inefficient: 
1. Unnecessarily high expectations 
2. Underdeveloped skills 
3. Unhelpful tests
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The value of testing is in quality not quantity
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How do you create a valuable 
testing strategy?
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Start by defining your goals
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Requirements met
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Time
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The best way to not break an application is to 
not change it, but we change software to make 
it better
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vs. ConfidenceIteration Speed
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Iteration Speed

“Move fast and break things”

“No deploy Fridays”
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Time Spent On Testing
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The goal of a testing strategy should be to 
optimize the amount of confidence you get for 
the time you invest in testing
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How much confidence do 
you need?
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How much confidence do you need? 
1. What stage of development are you in? 
2. What are your users’ expectations? 
3. What are the market expectations?
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How much confidence do you need? 
1. What stage of development are you in? 
2. What are your users’ expectations? 
3. What are the market expectations?
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As a product “matures”, you need more confidence
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Your confidence level should mirror your 
confidence that requirements are stable
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How much confidence do you need? 
1. What stage of development are you in? 
2. What are your users’ expectations? 
3. What are the market expectations?
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The cost to access and criticality of a product are 
directly related to how much confidence you need
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You can codify user expectations with 
service-level agreements (SLAs)
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How much confidence do you need? 
1. What stage of development are you in? 
2. What are your users’ expectations? 
3. What are the market expectations?
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Good understanding of your product market 
expectations avoids over- or under-investing in 
your testing strategy
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Example
Early development stage +
Low user expectations +
New market space =
Iteration Speed > Confidence
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Evaluate your options for 
building confidence
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Non-Testing Options
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Non-Testing Options 
Static Analysis

Linting
Type checking
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Non-Testing Options 
Static Analysis 
Ideological Changes

Reduce size + complexity
Encapsulation
SOLID (Single Responsibility)
Presentational + Container
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Non-Testing Options 
Static Analysis 
Ideological Changes 
Processes

Code reviews
Easy + fast deployments
Canaries / AB Tests
Observability + monitoring
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Non-Testing Options 
Static Analysis 
Ideological Changes 
Processes
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Non-Testing Options can build confidence without 
significantly impacting iteration speed, 
especially with changing requirements
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“Actual” Tests 
Unit, end-to-end, integration, smoke, acceptance, 
regression, functional, behavioral, etc.
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Tests that validate a user flow end-to-end
Tests that validate an isolated unit of functionality
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end-to-end tests unit tests
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unit testsend-to-end tests
Mimic user flow
Complicated, slow, flakey
Confidence a user flow works
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end-to-end tests 
Mimic user flow 
Complicated, slow, flakey 
Confidence a user flow works

unit tests
Isolated functionality

Simple,  fast, stable
No guarantee user 

flow works
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unit tests 
Isolated functionality 

Simple,  fast, stable 
No guarantee user 

flow works

end-to-end tests 
Mimic user flow 
Complicated, slow, flakey 
Confidence a user flow works
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Ideally, end-to-end tests are more valuable
Really, unit tests are often a better value
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Doing one or the other well is better than 
doing both poorly
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Valuable tests are those that catch issues
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Time Investment

Unit Tests

Non-Testing

End-to-End Tests

100%
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Put it all together
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Iteration Speed > Confidence 
What can you do within the time constraints?
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Ex: Barely enough time to deliver product as-is
Static analysis (linting + type checking)
Processes (fast deployments)
Add unit/end-to-end tests later
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Ex: In between Alpha and Beta phases
Ideological changes (refactor monolithic modules)
Add unit tests for complex data logic
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Confidence > Iteration Speed 
What options give us the confidence needed?
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Ex: Read-only app
End-to-end (visual regression) tests
Static analysis (linting + type checking)
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Ex: Highly configurable dashboard app
Unit tests (covering every option)
End-to-end tests (for basic combinations of options)
Ideological changes (small modules)
Processes (fast deployments, code reviews)
Static analysis (linting + type checking)
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Balance your time investment with the level of 
confidence you need at a given period in time
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Strategy should be revisited periodically
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Your mix of choices can/should change over time
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TL;DL (Too Long; Didn’t Listen)
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TL;DL (Too Long; Didn’t Listen)
Define your goals
Evaluate your options
Make choices based on your goals
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A custom testing strategy 
benefits your users, company, 
and team
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You don’t need to reinvent the 
wheel, but you also don’t need to 
use the same wheels as 
everyone else


