
@LostInBrittany#Devoxx #NoWebComponentForThat

But there is no
web component

for that!

Horacio Gonzalez
@LostInBrittany

@LostInBrittany#Devoxx #NoWebComponentForThat

Horacio Gonzalez
@LostInBrittany

Cityzen Data
http://cityzendata.com

Spaniard lost in Brittany,
developer, dreamer and
all-around geek

Who am I ?

So, who am I? I'm Horacio, I'm a Spanish software developer living
in France. I have been here for almost twenty years, so my English
accent combines the worse traits of both the Spanish and French
people. Yeah, I know, you are going to endure it for thirty minutes,
yeah….
I'm rather active in the local developer ecosystem, the Java User
Group, the Google Developers Group, I help to organize several
local conferences. I also do open source code, teaching and
speaking about web components and Polymer in quite a few
conferences and meetups, being so active in the subject that last
year Google appointed me as google Developer Expert in Web
Technologies.
But my real work, the one that make me eat, is being the frontend
guy for Cityzen Data, a startup doing an open source time series
database, Warp10.

@LostInBrittany#Devoxx #NoWebComponentForThat

Introduction
Context is everything

So let's begin with a short introduction, because a bit of context is
always useful. What am I going to talk about, and why. Because as
you will see, the why is at the center of my love for the
webcomponents standard...

@LostInBrittany#Devoxx #NoWebComponentForThat

There is no webcomponent for that!

So there is no web
component
for your nifty feature…

But there is a JS library

What can I do?

In this presentation I will talk you about that uncomfortable
moment where you need a complex feature for your
application but there is no webcomponent to do it. So you
look around and you see a JavaScript library that do it well.
And you wonder yourself what to do...

@LostInBrittany#Devoxx #NoWebComponentForThat

It isn't a theoretical problem

Maybe you won't never have this problem

And that's OK!

But I had the problem,
so I had to find an answer

I want to stress that it isn't a theoretical question, at least for
me, it has been a real one since the first moment I worked on
web components almost four years ago. You might never find
this problem, and it's ok. Many developers will never code a
webcomponent themselves, they will only integrate existing
components into their Angular, React or whatever application.
But I found the problem, and I really had to find an answer

@LostInBrittany#Devoxx #NoWebComponentForThat

I was kinda an AngularJS fanboy

Let's go back to 20-13. I was an AngularJS fanboy. After
having done GWT for years, Angular was like a sunshine in a
cloudy day. I had done many apps in Angular, I loved how
easy it was to deal with big apps.

I was (and I still am) the frontend guy in our startup, Cityzen
Data. We work on a time-series database, Warp10, and I did
the frontend apps. One day my boss asked me to do a web
IDE for Warp10, letting people to write their analytical queries,
interact with the store, get the results and manipulate them
graphically. Of course, I chose Angular to do it, I did lots of
directives and services, it was a nice app.

Some time later, my boss asked me for a monitoring
dashboard, and once again I choose Angular, and I was able
to reuse many of the directives, like those that interacted with
Warp10 or that plotted the time-series.

Everything was great in the best of the worlds

@LostInBrittany#Devoxx #NoWebComponentForThat

Until I hit a wall

Until one day my boss told me that we need to integrate our
dashboard in a customer's app… Oh, don't worry, I said, I will
extract the directives and… Nope, guy, it won't be so easy - he
told me - they aren't using Angular JS, it's something based
on Ember JS. And then I only said BEEEEEEP.

O.K., so I did some Ember version of my dashboard, I didn't
like it a lot but well, it worked. And then my boss came back
and he told me bad news again. I needed to integrate the
dashboard, but this time the need was some widgets to put in
plain old HTML pages. And maybe in a React app some time
later.

This time it was too much, I didn't want to spend my life
recoding the same thing in every JavaScript framework, I
needed to find another way...

@LostInBrittany#Devoxx #NoWebComponentForThat

Enter Web Components & Polymer

WebComponents, a modular approach to
webapps

And then I remembered a talk I had watched at Google IO
2013, about Web Components and Polymer. It seemed a
good solution for my problem, I could re-code all my widgets
one last time, as web components, and the I would be able to
use them in any framework, from Angular to Ember to React
to the next shiny JavaScript thing.

Well, in fact the web components standard was not finished
yet, no browser implemented it besides Chrome, the polyfill
was compulsory, Polymer was very young… but when you are
in need you cannot afford to be picky, so I took Polymer 0.4
and I recoded my widgets with it.

@LostInBrittany#Devoxx #NoWebComponentForThat

And it worked!

We put our first Polymer app in production on 2014 with Polymer 0.4
Full story: http://blog.cityzendata.com/2015/02/07/behind-CES-colors/

And it worked! O.K., it wasn't easy, and even some friends
from Google told me it was a bad idea, and I was crazy. But in
January 2014 I had a first Polymer app in production, in our
stand at the CES at Vegas. And it ran on computers, tablets
and phones; Windows, Linux, Mac, Android and iOS.

You have the full story in that address, you can go and read
all the details.

It was a nice moment for me: it validated our approach, it set
the course for our frontend development, it showed that it
was possible to use web components in real life, even
outside Google. But it wasn't easy...

http://blog.cityzendata.com/2015/02/07/behind-CES-colors/

@LostInBrittany#Devoxx #NoWebComponentForThat

It was there I met the problem...

I used D3.js, NVD3 and
canvas for my dataviz

But there was nothing
like that in Polymer

What could I do?

It was doing this first app that I met the problem. In my
widgets I did a lot of time series dataviz, using mainly D3.js
and NVD3 libraries, and some custom made libraries over
canvas.

I looked around the early Polymer ecosystem, there was
nothing to do dataviz.

So what could I do?

@LostInBrittany#Devoxx #NoWebComponentForThat

For each problem there is a solution

I saw several solutions:
● Wait for the web

component
● Dirty integrating the

library
● Componentalize it

Guess which one I chose...

In my head I only saw three possible solutions:

● I could wait for somebody to implement a web
component based on the library I needed, or on a
similar one. It was a nice idea in theory, but I hadn't
neither the time not the patience for that, I needed the
feature, and I needed it quickly

● I could integrate the library in my code, in a quick and
dirty way. I bit like the people who used jQuery in their
Angular applications. Been there, done that, felt the
pain. I wasn't going to do it!

● Or I could simply componentalize the library, wrap it in a
clean web component structure, respecting the
attribute-in event-out model and cleanly solving the
problem once forever

Do I need to tell you which choice I took?

@LostInBrittany#Devoxx #NoWebComponentForThat

It was only the first time...

And the problem came back often, as many of the libraries I
wanted to use hadn't a web component version yet. Like one
or two months later when I needed a rich text editing widget
based on Ace editor, or more recently when I looked for a QR
Code generator…

And the only answer that I found was to com-po-nen-ta-lize
them.

@LostInBrittany#Devoxx #NoWebComponentForThat

How do I componentalize them?

The first time I had to componentalize a library it was rather
complicated, because I didn't know exactly what I needed to
do.

I took inspiration from some Polymer components, specially
from iron-ajax, that wraps the native XHR (ajax) function in a
component form, because it has the right mix of simplicity,
richness of features, good component patterns (attribute-in,
events-out) and clean code that make it a really nice example.

And then, quicker that I thought, it was done. And it worked! It
wasn't as hard as I had thought, and I was a pleasure to use it
in my apps, integrating the new component everywhere
without problem.

@LostInBrittany#Devoxx #NoWebComponentForThat

Componentalizing a library
Let's begin with a simple example

So let's see how do I tackle the problem of creating a web
components wrapping a JavaScript library.

A quick disclaimer: I'm showing how to componentalize a library
using Polymer. The process would be almost the same if you
wanted to use vanilla web components, SkateJS, BramJS or any
other web component library. The only thing that would change is
the idiomatics and tooling of the process.

And I use the "I" because it's only one way to do it, my way. There
are surely lots of other approaches, but this one works for me. Oh,
and it's rather similar to what the Polymer teams guys do in some
of their components, so I guess it isn't a bad approach.

Enough introduction, let's begin with an example.

@LostInBrittany#Devoxx #NoWebComponentForThat

granite-qr-generator

Let's begin with a small example, something I needed last
summer, an element to generate a QR Code. I needed to be
able to generate several types of QR Codes (alphanumeric,
numeric, URL…), be interactive (if the data attribute changed, I
needed the QR Code to actualize) and really simple to
integrate, because it was a small need and I didn't wanted to
lost time on it.

As I didn't find what I needed in the webcomponents'
catalogs, I decided to do it myself. It was then that
granite-qr-generator was born.

Why granite ? Because most Polymer element families seems
to be named on materials : iron, paper, gold… So I wanted my
components to be easily recognizable but following the same
convention, and as I live in the granitic coasts of Brittany, I
choose granite as material, and named my element collection
granite-elements.

@LostInBrittany#Devoxx #NoWebComponentForThat

What QR Code library to use?

I choose QR.js
https://github.com/lifthrasiir/qr.js/

● Small
○ 26 kb uncompressed and commented

● Quick!
● Well coded

○ Structured, lots of comments, clean code

● No dirty DOM manipulation

I spent some time looking at the various QR code JavaScript
libraries, trying to choose which one to use. The one I choose
was qr.js, a rather old (2011) QR code generator in pure
Javascript. It was small, quick, clean (well coded, structuted,
with many comments…) and it seemed not to do any dirty
DOM tricks.

I will tell you later about the dirty DOM tricks, one of the thing
you will have to think about when componentalizing libraries.

https://github.com/lifthrasiir/qr.js/

@LostInBrittany#Devoxx #NoWebComponentForThat

Steps

1. Creating an empty element

2. Add the library as a dependency

3. Load the library in the element file

4. Build a web component
encapsulating it

5. Profit?

So, if I wanted to quickly describe the process of
componentalizing a library, I would use that five steps:

1. Creating an empty Polymer element, either by hand or
using the Polymer CLI

2. Add the library as a dependency to the bower.json
3. In your element, load the library, either in the global

scope or in a local one if the library is modularized
4. Build a web component encapsulating the library,

proposing the attribute-in events-out pattern that allows
to interact with the library

5. Profit ? Or better said, enjoy your newly created
element!

@LostInBrittany#Devoxx #NoWebComponentForThat

"Build a web component encapsulating it"

Easier said than done?

1. Define the inputs (attributes)
2. Define the outputs (events)
3. Define the UI (template)
4. Wire the attributes and events to the

library
5. Use the lifecycle methods to

initialize

"Build a web component encapsulating the library", that is
really easy to say. But is it so easy to do? Well, to be fully
honest, I would say that it isn't ALWAYS so easy… but in most
normal cases it's really NOT difficult.My method:
1. Define the attributes, or in Polymer syntax the

properties. Here you put the parameters needed to pilot
your component from the outside, and if needed some
properties to finely tune the library

2. Define the events that will be emitted by your
component, if needed

3. Define the element's template
4. Wire the attributes and events to the library
5. Use the livecycle methods (ready and attached in

Polymer) to initialize the library
Let's see how do we do it for our QR Code generator

@LostInBrittany#Devoxx #NoWebComponentForThat

Define the inputs (attributes)

So I looked at the QR.js library, searching for the input parameters it
needed to generate the QR Codes. There were some 8 parameters,
some of them needed every time it generates a QR code (like the data
parameter, that is the data to encode), other are only used if we want to
diverge from the behavior by default. I defined a property for each
parameter, and I set the right by-default values according to the values
proposed in the library. Thats allows you to use the component defining
only the obligatory attributes if we want the by default result, or setting
other attributes to finely tune the result.

Inspired by iron-ajax, I added an auto property to define if we want to
generate a new code as soon as any parameter change (by default
behavior with web components) or if the prefer to manually tell the
element when to generate (by calling the generateQRCode method of
the element,

@LostInBrittany#Devoxx #NoWebComponentForThat

Define the outputs (events)

Events are used by the element to signal the outside world
that something interesting has happened. For our QR Code
generator there is really no need to raise any event, besides
maybe one when a new code is generated.

@LostInBrittany#Devoxx #NoWebComponentForThat

Define the UI (template)

The template is really simple for our element, the only thing
we need is an UI element, a DIV for example, that we will pass
to the QR.js library and that it will use as root element for the
QR Code.

Do you remember when I told you about playing fair with the
DOM ? QR.js does it, it generates an HTML element or image
element that you can directly append to the node you want to
use as root. It doesn't ask neither for a selector, nor for an id
or a classname. Libraries that ask for an id, for example, are
difficult to use with web components, as they usually do a
document.getElementById using the id, and it doesn't work
inside the ShadowDom boundary.

@LostInBrittany#Devoxx #NoWebComponentForThat

Wire the attributes and events to the
library

In this step we begin by adding some validators, in order to
verify the coherency of the input parameters, to sanitize the
inputs. This step could be optional, as the library will usually
do a similar thing, but there is a nice side effect in doing it
here, it's to put the sanitized values back to the attributes,
that makes things easier to debug from the outside of the
element.

@LostInBrittany#Devoxx #NoWebComponentForThat

Wire the attributes and events to the
library

An observer listen to the changes in the input parameters (the
attributes) and, if the auto parameter is true, launches the
generation of a QR code.
If auto is false, the only way to make the library generate a
new QR code is to call directly the generatedQRCode method

@LostInBrittany#Devoxx #NoWebComponentForThat

Wire the attributes and events to the
library

In the generatedQRCode method be gein by mapping the
attributes to the input parameters of qr.js, an options object.
Then, according to the chosen format (PNG or HTML), we call
the right function of QR.js to generate the QR Code, either as
an image or an HTML element. At last, we use Polymer DOM
API to remove the ancient codes from the div and appending
the generated code.

As no initialisation is needed, we don't need to add any code
in the lifecycle, so our element is done.

@LostInBrittany#Devoxx #NoWebComponentForThat

granite-qr-generator

So the element is complete, and if you scan the QR Code
currently in your screen you will go directly to the
granite-elements home page, when you can find
granite-qr-code and many other of its brothers and sisters

@LostInBrittany#Devoxx #NoWebComponentForThat

granite-qrcode-scanner

But what about libraries that don't play fair with the DOM?
Let's see the case of another of my granite elements,
granite-qrcode-scanner.
The need came when I was asked to make a Progressive Web
Apps for a conference, to replace their different native apps
and their mobile site.
One of the functions of the app was to be able to scan the
badges of other attendees in order to get their public contact
information.
So I needed a QR Code scanner. Well, several months ago I
had done the qr code generator, the scanner couldn't be more
difficult, could it?

@LostInBrittany#Devoxx #NoWebComponentForThat

What QR Code scan library to use?

I choose jsqrcode
https://github.com/LazarSoft/jsqrcode

● Small for a full QR Code scanner
○ 110 kb uncompressed and commented

● Quick and efficient
● Well coded

○ Structured, lots of comments, clean code

● But with some dirty DOM manipulation

So, once again, I spent some time looking at the various QR
code scan JavaScript libraries, trying to choose which one to
use. The one I choose was jsqrcode, a rather old (2010) QR
code scanner in pure Javascript. A port of the well known
ZXing qrcode scanner. It was small for such a scanner, it
was quick and efficient, (able to decode quickly and with
good decoding rate), clean (well coded, structured, with
many comments. But I hand't seen is that it did some dirty
DOM manipulation...

https://github.com/LazarSoft/jsqrcode

@LostInBrittany#Devoxx #NoWebComponentForThat

Steps

1. Creating an empty element

2. Add the library as a dependency

3. Load the library in the element file

4. Build a web component
encapsulating it

5. Profit?

1. So I did the initial steps, creating the element, adding
the library as a dependency, loading it in the element
file…

2. And then I attacked the building of the component...

3.

@LostInBrittany#Devoxx #NoWebComponentForThat

"Build a web component encapsulating it"

Easier said than done?

1. Define the inputs (attributes)
2. Define the outputs (events)
3. Define the UI (template)
4. Wire the attributes and events to the

library
5. Use the lifecycle methods to

initialize

Following the same five steps that I described earlier...

@LostInBrittany#Devoxx #NoWebComponentForThat

Define the inputs and outputs

There are fewer input, described as Polymer properties: the state of the
scanner (when it's working it eats a lot of battery, so we want to control
when to switch it on, the last decoded data, and the dimensions of the
scanning window
As in the qr code generator case, the only output is an event to signal
we have decoded a qrcode

@LostInBrittany#Devoxx #NoWebComponentForThat

Define the UI (template)

The template looks more complex… but that's thanks to
Safari, who doesn't support WebRTC and forces us to do
some alternative method, that's the lines 49 to 58. Besides
that we have a video tag, and a canvas. Why ? Wait a second,
I will tell you

@LostInBrittany#Devoxx #NoWebComponentForThat

Initializing in the lifecycle methods

In the lifecycling methods, here in attached, we do our setup:
we test if the browser supports WebRTC, we initialize the
canvas that will receive the image to decode, and then we do
all the dirty code to initialize the webcam...

@LostInBrittany#Devoxx #NoWebComponentForThat

Initializing in the lifecycle methods

Did I say the dirty code ? I wanted to be sure the element
works in as many browsers as possible, so the code was not
pretty…

Please, don't try to read it here… and if you do it later and see
a simpler way to do it, please make a pull request!

@LostInBrittany#Devoxx #NoWebComponentForThat

But what about the wiring?

Almost no wiring needed

● Either done in the
template

● Or in the initialization

Hey, I did forgot the wiring, didn't I ? Not really, but in this
case the wiring is rather minimalistic, and it's done either in
the template or in the initialization, in the lifecycle methods.

@LostInBrittany#Devoxx #NoWebComponentForThat

And then, does it work?

Weeeeell, not really…

And it doesn't give a clear
error

What does it happen here ?

So then I test it at last, full of hope… and it doesn't work!
But why ?!?! There was no clear error in the console, it failed
somewhere inside jsqrcode…
What to do?

@LostInBrittany#Devoxx #NoWebComponentForThat

Digging in the problem

Going deep inside the library
Adding logs and breakpoints
And I found the guilty line:

So I dag in the library, trying to understand how does it work. I
put logs, set breakpoints… And I found it, one guilty line.
Do you spot it? Yes, it's line 34, a getElementById with a set
id, that couldn't work on a component world, inside Shadow
DOM…

What to do?

@LostInBrittany#Devoxx #NoWebComponentForThat

Patching the library

Doing it the open source way...

I did the only sane thing for an open source developer, I
forked the project, patched the library in order to keep exactly
the same behavior (I didn't want to break anyones's code) but
with a new options that allowed to explicitly pass a HTML
canvas object.

So now my dependency wasn't on Lazersoft jsqrcode but on
my fork. I'm putting a pull request on their repository as soon
as I will find time to correctly explain what I do and why, of
course.

@LostInBrittany#Devoxx #NoWebComponentForThat

granite-qrcode-scanner

And it worked, the element detected and scanned the QR
Code, quickly and efficiently.

If I had more time, I'd tell you the hack I had to do to make it
work on iOS, but as they say, that's another story that will be
tell another time...

@LostInBrittany#Devoxx #NoWebComponentForThat

Other examples: ace-widget

Ace editor is a well known JavaScript library to make rich
editors. When I had to do an IDE for Warp 10, I wanted to use
all the power of ace, but keeping the component approach, so
I did a Polymer version.

It worked like a charm… until I tested it in full ShadowDOM
mode. While it worked in Shaddy DOM, in ShadowDOM all the
styles were messed up. It was there that I discovered the
effets of dirty DOM manipulation, Ace creates some styles on
the fly using the ids in your document, and put them in the
header of the HTML page. Of course, it doesn't pass well the
Shadow DOM boundary…

I had to create a Polymer behavior and some custom JS code
in order to intercept that styles and creating them in the
template of the component instead. And then, it worked!

@LostInBrittany#Devoxx #NoWebComponentForThat

Thanks!

I hope you liked this talk!

Don't hesitate to send me your questions
by email, twitter, hangout, carrier pigeon...

