
PRESENTED BY

Design, Develop & Mock APIs
with Postman

Kaustav Das Modak
Developer Advocate, Postman

@kaustavdm

https://twitter.com/kaustavdm

Concepts
• Real-life API collaboration
• API Design: What we need
• Postman fundamentals

Role: Producer
• Creating collections and Mocks
• Using “API” and schema

Role: Consumer
• Using Mocks
• Collaborating with producer

What we will cover

Part 1: Concepts

Let’s talk about APIs

Applications today are built of multiple
interacting components

When systems talk to each other, we should
carefully design how they interact

Design your APIs before you
implement them

Agree on domain boundaries and data models
before you implement them

Agree on domain boundaries and data models
before you implement them

Collaborate

Agree on domain boundaries and data models
before you implement them

Collaborate

Business use case
Abstraction
Encapsulation

Agree on domain boundaries and data models
before you implement them

Collaborate

Business use case
Abstraction
Encapsulation

Entities
Resources

Data structures

Design Implementation

Data models

Business logic Publish

Code

A good design should adapt to changes

Key concepts

If you work with APIs…

What is an API?

What is an API?

Interface

Schema
OpenAPI

RAML
GraphQL
Postman

What is an API?

Interface Implementation

Schema
OpenAPI

RAML
GraphQL
Postman

Code
Databases

Repositories
Microservices

…

What is an API?

Interface Implementation Instance

Schema
OpenAPI

RAML
GraphQL
Postman

Code
Databases

Repositories
Microservices

…

Deployed
Interface +

Implementation +
Servers

…

What is an API?

Interface Implementation Instance

Schema
OpenAPI

RAML
GraphQL
Postman

Code
Databases

Repositories
Microservices

…

Deployed
Interface +

Implementation +
Servers

…

What is an API?

Interface Implementation Instance

Schema
OpenAPI

RAML
GraphQL
Postman

Code
Databases

Repositories
Microservices

…

Deployed
Interface +

Implementation +
Servers

…

Roles

Producer Consumer

Roles

Producer Consumer

Requirements

Roles

Producer Consumer

Resources

Requirements

Scopes

Private Partner Public

Scopes

Private Partner Public

More potential consumers

Schema

Schema

OpenAPI
2.0 | 3.0

GraphQL RAML
Postman

Collections

WSDL API Blueprint

Producers
How do we gather requirements?
How do we share API docs?
How do we collect feedback?

Consumers
How do we give our inputs?
How do we consume docs?
How do we test our requirements?

Questions to ask

Design the interface
Write API schema
Build a testable, executable spec
Collaborate on decisions

Document the interface
Resource & usage descriptions
Request/Response examples

Collaborate on implementation
API Mocks
API Contracts

What we need for  
effective API design

What is the single source of truth?

Part 2: Setting things up

GET postman.com

Design API for a hypothetical
service to manage list of cats.

As both producer and consumer.

What we will build today

Routes:

- GET /cats
 Returns list of all cats
- POST /cats
 Add a new cat

Cat schema:

- id: Integer
- name: String
- breed: String
- age: Integer

v0.1

Routes (new):

- GET /cats/{{catId}}
 Find a specific cat

v0.2

Part 3: Postman fundamentals

Collections

Group and organize your requests
into meaningful collections.

Variables

Foundation of dynamic values for
requests. Can be manipulated
programmatically.

Workspaces

• Organised by service and function

• Service producers and consumers share
their collections in them

Pre-request Script

• Written in JavaScript

• Executed in a sandboxed NodeJS
environment

• Executed before request is sent

• Modify request through variables

Tests

• Written in JavaScript

• Executed in a sandboxed NodeJS
environment

• Executed after response is received

• Can have assertions

• Quick-start snippets

Postman API

Programmatically interact with
elements in the Postman
ecosystem

api.getpostman.com

Blueprints

• Collections created by service producers to
describe an API

• Includes examples of each request to
document responses

Mock servers

• Created by service producers from blueprint
collections

• Used by service consumers to test API
contracts

Comments

• To make contextual comments and tag
other team members in collections, in the
app, and in the browser

• Used to negotiate API design among
stakeholders

Questions?  
(and a quick break)

Part 4: Role - API Producer

• Build a blueprint collection
• Add requests
• Add documentation
• Add examples

• Success cases
• Failure cases

• Share collection in Workspace
• Comments on requests

Create blueprint collection

• What is a Mock Server? (Recap)
• Create a mock server from

Blueprint collection
• Execute Blueprint collection

against Mock

Create Mock Server

• Create a new “API”
• Add OpenAPI 3.0 YAML schema

• From: bit.ly/postman-api-yaml
• File: api-v0.1.yaml

Create “API” and schema

https://bit.ly/postman-api-yaml

• Edit API version tag to v0.1
• Add blueprint collection and

mock to API v0.1
Use versioning

Questions?  
(and another quick break)

Part 5: Role - API Consumer

• Build contract collection based
on blueprint collection

• Send requests to Mock endpoint
• Save and document requests
• Add tests to assert on response
• Switch base URL using

environments

Using Mocks as a consumer

Part 6: Work with versions

• Create v0.2 for the API
• Update OpenAPI schema

• From: bit.ly/postman-api-yaml
• File: api-v0.2.yaml

• Update blueprint
• Update contract
• Tag collections with new version

Create v0.2

https://bit.ly/postman-api-yaml

Questions?  
(and we’re done!)

Thank you!

@postmanclient
@kaustavdm
betterpractices.dev

