
Purifying

@robinpokorny

React

Hi, I will share how we made our front end pure, by
incrementally introducing Redux, ImmutableJS, and higher-order

components, all under constant requests for new features.

https://twitter.com/robinpokorny

I’m Robin and I met React on the internet.
We've been together since.

Nine months ago I joined Wimdu to help it with its front end.

Our site is server-rendered by Rails.
We have a growing number of async-loaded independent

React components to enhance the page.

The problem occurred when we wanted them to
communicate amongst themselves.

We decided to implement a state container— Redux.

We only introduced Redux when we felt we needed it.
We try to avoid premature optimisation and over-engineering.

As we were aware that a rewrite would be too big, paralysing
us for weeks we came up with an incremental process.

Now, we need to purify our code base…

‘Pure’ is a concept in functional programming (learn more).

https://en.wikipedia.org/wiki/Pure_function

We start purifying at the bottom—individual functions.
This was not a project or task. We only refactored code we

were touching during our regular work.

Functionthis to params

First step was easy.
Get rid of this and pass data in parameters.
Only lifecycle function could still access this.

renderGroups() {
 const { groups } = this.props

 …
}

renderGroups(groups) {
 …
}

instacod.es/107138

Old

New

http://instacod.es/107138

Second step proved to be more challenging.
Instead of changing the object, function should return

changed object without modifying the original.

const addParam = (options, name, param) => {
 options[name] = param
}

const addParam = (options, name, param) => {
 return Object.assign(
 {},
 options,
 { [name]: param }
)
}

instacod.es/107139

http://instacod.es/107139

When all functions in a component are pure, 
we make the component pure, too

Function

Component

this to params

state to props

This means a component should only depend on its props.
Everything in state was moved to the parent component’s

state and passes down via props.

propstate

This is how an ideal pure component looks like.
Note that we are thoroughly describing propTypes.

They serve also as a documentation.

const MyComponent = ({ steps, modifier = '' }) => (
 <div class={ modifier }>
 …
)

MyComponent.propTypes = {
 steps: PropTypes.arrayOf(
 PropTypes.shape({
 completed: PropTypes.bool.isRequired,
 title: PropTypes.string.isRequired
 })
).isRequired,

 modifier: PropTypes.string
}

instacod.es/107140

http://instacod.es/107140

Now when all children components are pure 
we can make the top-level container pure too.
Only this container is aware of the data flow.

Function

Component

Container

this to params

state to props

all in state

All data is inside this container’s state.
Modifications are possible only with provided methods.

MyComponent passes these ‘actions’ further.

import MyComponent from './my-component'

class Wrapper extends React.Component {
 constructor() {
 this.state = {
 active: false,
 list: [],
 };
 }

 open() { … }
 close() { … }

 render() {
 return (<MyComponent
 {...this.state}
 onOpen={this.openScratchpad.bind(this)}
 onClose={this.closeScratchpad.bind(this)}
 translations={this.props.translations}
 />)
 }
}

export default Wrapper
instacod.es/107146

http://instacod.es/107146

Introducing Redux is now easy.
We have the data structure described.

All components keep their APIs (= propTypes).

Function

Component

Container

Redux

this to params

state to props

state to store

all in state

We can remove the Wrapper and connect to Redux.
Data is now in store, actions correspond to methods.

MyComponent has not changed.

instacod.es/107141

http://instacod.es/107141

As mentioned earlier, our app is in fact Rails app.
The react-rails gem enables mounting React in templates.

It also passes data from Rails to the component.

react-rails

To pass the initial state (from multiple templates) we
serialise it to JSON and append it to the array.

Component is referenced by (global) variable name.

instacod.es/107136

http://instacod.es/107136

Thanks to ImmutableJS deep merging method we
combine all partial states into one store.

We use tx to pass this store to the component.

import tx from 'transform-props-with'

if (!window.Wimdu.store) {
 const initialState =
 Map().mergeDeep(...window.__INITIAL_STATE__)

 window.Wimdu.store = configureStore({ initialState })
}

window.Wimdu.MyComponent =
 tx({ store: window.Wimdu.store })(MyComponent)

instacod.es/107137

https://github.com/robinpokorny/transform-props-with
http://instacod.es/107137

Changing data handling in Redux we introduce 
immutable structures (e.g. ImmutableJS).

No need to touch anything else.

Function

Component

Container

Redux

this to params

state to props

state to store
immutable

all in state

https://facebook.github.io/immutable-js/

This is an example Redux reducer.
Thanks to Records we have structure consistency,

documentation, and dot access notation.

instacod.es/107142

http://instacod.es/107142

Unfortunately it is difficult to have Record of Records.
For namespacing we combine reduces the usual way.

Leafs (and only leafs) of reducer tree are Records.

instacod.es/107143

http://instacod.es/107143

instacod.es/107144

To ensure backwards compatibility we convert immutable
structures to simple JS objects at first.

We ‘immutablyfy’ a component passing JS to its children.

http://instacod.es/107144

First we went UP—purifying from smallest parts.
We introduced immutability at the top and went back DOWN.

Function

Component

Container

Redux

this to params

state to props

state to store
immutable

all in state

Download this slide as a one-page summary: http://buff.ly/1XbtFpH

http://buff.ly/1XbtFpH

I am fond of Elm (although not on the production now).
It helps me to decide how to structure the app.

Both React and Redux are inspired by Elm.

‘How would I do it in Elm?’

A secret tip for better React and Redux apps:

http://elm-lang.org/

I want to thank my team for their hard work. You made this happen!

Any question or feedback is welcomed.

@robinpokorny me@robinpokorny.com

https://twitter.com/robinpokorny
mailto:me@robinpokorny.com?subject=

Cover image was taken from 1952 Kaiser Aluminum ad: 
http://www.fulltable.com/vts/f/fut/f/world/SH536.jpg

Image on the last slide is taken from a postcard:
Fission Room, Niagara Mohawk Progress Center, Nine Mile Point, NY

This work by Robin Pokorny is licensed under a
Creative Commons Attribution 4.0 International License.

http://www.fulltable.com/vts/f/fut/f/world/SH536.jpg
http://robinpokorny.com
http://creativecommons.org/licenses/by/4.0/

