
I DIDN’T KNOW CSS
I DIDN’T KNOW CSS

COULD DO THAT!
COULD DO THAT!

Matteo Fogli
DevFest Alps 2024

Hello there �

This is (not) the web developer you've been looking for

So what’s new with CSS?

A lot:
Architectural foundations

🚀 ��Trigonometric functions
🆓 ��Complex nth-* selection
� ��Scope
� ��Nesting

Typography

🚀 ��Initial-letter
🆓 ��Text-wrap balance/pretty

Color

🚀 ��Color level 4
🆓 ��Color-mix function
� ��Relative color syntax

Responsive design

🚀 ��Container queries
🆓 ��Style queries
� ��:has selector
� ��Update media query
🆕 ��Scripting media query
� ��Transparency media query

Interaction

🚀 ��View transitions
🆓 ��Linear-easing function
� ��Scrollend
� ��Scroll-driven animations
🆕 ��Deferred timeline attachment
� ��Discrete property transitions
🤩 ��Starting-style rule
🆒 ��Overlay animation

Components

🚀 ��Popover
🆓 ��Hr in select
� ��User-valid/invalid pseudo classes
� ��Exclusive accordion

… but Can I Use it?

Baseline is available on MDN, Can I Use, and web.dev

ENTER: BASELINE

Baseline is a cross-functional initiative to provide better clarity on browser feature availability ⏭

This is a good proxy for deciding when to drop a JS implementation and use a progressively enhanced CSS solution ⏭

Baseline is an initiative of the WebDX Community Working Group

Speaker notes

https://developer.mozilla.org/en-US/blog/baseline-unified-view-stable-web-features/
https://web.dev/baseline
https://web-platform-dx.github.io/web-features/

https://developer.mozilla.org/en-US/blog/baseline-unified-view-stable-web-features/
https://web.dev/baseline
https://web-platform-dx.github.io/web-features/

Baseline is available on MDN, Can I Use, and web.dev

ENTER: BASELINE

How do features become part of Baseline?

Baseline has two stages:

Newly available: The feature works across the latest devices and browser versions. The
feature might not work in older devices or browsers.

Widely available: The feature is well established and works across many devices and
browser versions. It s̓ been available across browsers for at least 2½ years �30 months).

2 stages: newly available and widely available
it might take more than 30 months for a feature to be widely available, we count from the release date of newly available
what about features that don't make it yet? ⏭
these feature are publicly available, not behind a flag
it means the standardization process is complete and the spec final
browsers

Speaker notes

How do features become part of Baseline?
Features that have not yet landed in Baseline are:

Limitedly Available: The feature works only behind a flag or on specific browsers and versions.

How do features become part of Baseline?
Baseline is calculated using the following core browser set:

Apple Safari (macOS and iOS�

Google Chrome (desktop and Android)

Microsoft Edge (desktop)

Mozilla Firefox (desktop and Android)

Interop (2024)
A cross-browser effort to reach a state where each
technology works exactly the same in every browser.

Accessibility CSS Nesting Custom Properties

Declarative Shadow DOM font-size-adjust HTTPS URLs for WebSocket

IndexedDB Layout Pointer and Mouse Events

Popover Relative Color Syntax requestVideoFrameCallback

Scrollbar Styling @starting-style and transition-
behavior

Text Directionality

text-wrap: balance URL

a cross browser initiative to push forward some features during the year in order to reach newly available

improve the interoperability of the web
uses suite of tests
involves browser vendors on shared vision for each year's baseline

Speaker notes

IS THIS BECAUSE YOU

HATE JAVASCRIPT?
Absolutely not!

all this focus on CSS… is this because you hate javascript?

I love the web

I love CSS

and I love JavaScript AND TypeScript

The web is an incredible platform but every tool has a use, and we are seeing an explosion of them... it would be foolish to pass the chance to use them!

So why the fixation with JavaScript?

Speaker notes

Heres̓ what we get for free

Running off the main thread
No re–rendering
Progressively enhanced
Better performance

BUT WHY WORK AGAINST

THE BROWSER?

I'm a huge performance freak, I sweat about milliseconds and removing JS code is my first go-to stop for performance optimizations. Not only do we ship less code (and have to mantain less
code!), we also avoid having to think about loading strategies and deferring UX enhnacements to when the scripting is eventually ready (unless of course we want huge INP metrics and very
angry users staring at a frozen screen)

Also, I don't like people that "HATE". Well, there are some good reasons to hate, and it gets political the very minute you think about it, but we are a community (of designers, developers,
builders, makers, visionaries…) We teach, we don't hate. We share, we make progress together. And this — i hope — is what we'll do today.

declarative language easier than JS
no need to worry about implementation details
less code shipped
Accessibility

Speaker notes

The Principle of Least Power
There's an inverse relationship between the

power of the language and how easy it is to learn.

If you can do it with HTML, � use HTML
If you can't do it with HTML, � use CSS
If you can't do it with HTML or CSS, � use Javascript

There’s also en economic / philosophical motive:

these principles are from the HTML First manifesto
I don't share all of the opinions but these principles are sane
HTML First promotes a style of writing web software that favours using the native capabilities and languages of the browser and reducing layers of abstraction (languages and toolchains) on
top of them
HTML is the least powerful language but has the lowest learning curve, and javascript is the most powerful but has the highest learning curve
it's a manifesto for the efficiency of the web (and our sanity of mind as dev), although I don't share every opinion in there (YMMV always applies)

Speaker notes

https://html-first.com/

https://html-first.com/

the power of the selector

COMPLEX CONDITIONAL
COMPLEX CONDITIONAL

DOM STATESDOM STATES

:has

:has is one of the most powerful and revolutionizing selectors that has landed in CSS

after years, we're finally able to select a parent element based on the conditions of the children (and much more)

Speaker notes

 gives us the power to select an element based
on the state or presence of children elements.

It unlocks a whole range of possibilities that previously required
conditionally applying classes to the DOM via JavaScript

THE PARENT SELECTOR

:has

we don't have to keep state nor patch the DOM to adapt layouts and designs to specific states or conditions

Speaker notes

The basics

element:has(.child)

element:has(> .direct-child)

element:has(:state)

element:has(:state) .child

:state can be anything like :focus, :hover, :checked, and even [disabled] or any other [attribute]

argument can be anything

Speaker notes

The not so basics

element:has(:not(:state))

element:has(.logical, .or)

element:has(.logical):has(.and)

select hierarchically vs select horizontally

select with a logical OR

select with a logical AND

Speaker notes

Change parent element based on child:hover

Resources

HTML CSS
E D I T O N

Result

1× 0.5× 0.25× Rerun

https://codepen.io/michellebarker/pen/vYzqaNO

great pen by Michelle Barker

Speaker notes

https://codepen.io/michellebarker/pen/vYzqaNO

https://codepen.io/michellebarker/pen/vYzqaNO

Change parent element based on content

Resources

HTML CSS
E D I T O N

Result

1× 0.5× 0.25× Rerun

https://codepen.io/jensimmons/pen/bGoMydw

and another great example by Jen Simmons. here the cards span two columns when they include an image

Speaker notes

https://codepen.io/jensimmons/pen/bGoMydw

https://codepen.io/jensimmons/pen/bGoMydw

Change previous sibling

Resources

HTML CSS
E D I T O N

Result

1× 0.5× 0.25× Rerun

https://codepen.io/web-dot-dev/pen/XWOqoPL

inspired by a majestic talk by Sanne t' Hooft see

Speaker notes

https://codepen.io/web-dot-dev/pen/XWOqoPL

https://sinds1971.nl/cssday/ https://codepen.io/shooft/live/bGmMZEP

https://codepen.io/web-dot-dev/pen/XWOqoPL
https://sinds1971.nl/cssday/
https://codepen.io/shooft/live/bGmMZEP

Baseline Newly Available

Feature detection

figure {
/* widely supported CSS styles here */

}

@supports selector(figure:has(caption)) {
figure:has(caption) {
/* newly available CSS styles here */

}
}

 caveats and usage hints
not forgiving (use)
takes highest specificity of argument selectors
keep as specific as possible
might have performance issues with very big DOM trees (real world test donʼt
surface this issue)

:has

:where()

THE “RANGE” SELECTOR
THE “RANGE” SELECTOR

this is a very powerful but rarely known baseline widely available feature
once again, it allows us to drop some rendering cycles and JS DOM patches, deferring to CSS layout adaptations and optimizations
CSS Selectors Level 4 for of extension

Speaker notes

Resources

HTML CSS JS
E D I T O N

Result

1× 0.5× 0.25× Rerun

:nth-child(n + B) :nth-child(-n + B)

https://codepen.io/pecus/pen/bGXwVNw

we can select ranges (first n elements, last n elements, n to m elements)
we can count elements (combining :nth-child and :nth-last-child with :has)

Speaker notes

https://codepen.io/pecus/pen/bGXwVNw

https://codepen.io/pecus/pen/bGXwVNw

Resources

HTML CSS
E D I T O N

Result

1× 0.5× 0.25× Rerun

:nth-child(An + B of .selector)

https://codepen.io/web-dot-dev/pen/oNMRaQq

CSS Level 4 update. Allows to pre-filter elements based on a selector before counting them.

The element that matches :nth-child(2 of .highlight) has a pink outline.

The element that matches .highlight:nth-child(2) has a green outline.

Speaker notes

https://codepen.io/web-dot-dev/pen/oNMRaQq

https://codepen.io/web-dot-dev/pen/oNMRaQq

Resources

HTML CSS JS
E D I T O N

Result

1× 0.5× 0.25× Rerun

:nth-child(An + B of .selector)

https://codepen.io/pecus/pen/poMPvqL

the most classic case for adoption is alternating table rows (AKA the Zebra effect).

when rows are filtered, :nth-child() would not potentially select alternating rows, because hidden rows are still child of the parent element (and therefore counted). the of selector argument
allows to pre-filter the set and keep the alternating rows effect always visible

Speaker notes

https://codepen.io/pecus/pen/poMPvqL

https://codepen.io/pecus/pen/poMPvqL

 Baseline Newly Availableof <selector>

:nth-child() selector is baseline widely available since 2015 (Hello IE)

Speaker notes

TYPOGRAPHICALLY
TYPOGRAPHICALLY

ACCURATE TEXT
ACCURATE TEXT

WRAPPINGWRAPPING

we have eyes trained on print
typography is beautiful
yet another thing we used JS for

Speaker notes

Resources

HTML CSS Babel
E D I T O N

Result

1× 0.5× 0.25× Rerun

Replaces: https://react-wrap-balancer.vercel.app/

text-wrap: balance

https://codepen.io/pecus/pen/jOgrxQN

shorthand for CSS properties: text-wrap-mode and text-wrap-style
balance: best balances the number of characters on each line, enhancing layout quality and legibility.
computationally expensive
only supported for a limited number of lines (6 Chromium, 10 Firefox)
make sure to apply only to headline
will not change the element box size
only works if text wraps, so make sure to specify a max width (use logical sizes combined with char units for best effect: max-inline-size: 80ch)
works with web fonts, no need to wait for the font observer to ensure that the font has loaded to balance the headline
While we're at it...

Speaker notes

https://codepen.io/pecus/pen/jOgrxQN

https://codepen.io/pecus/pen/jOgrxQN

Resources

HTML CSS Babel
E D I T O N

Result

1× 0.5× 0.25× Rerun

text-wrap: pretty

https://codepen.io/pecus/pen/gOVMyQd

pretty: same behavior as wrap, except that the user agent will use a slower algorithm that favors better layout over speed. This is intended for body copy where good typography is favored
over performance

Speaker notes

https://codepen.io/pecus/pen/gOVMyQd

https://codepen.io/pecus/pen/gOVMyQd

Baseline Newly Available

Some limitations apply.

text-wrap is actually a shorthand for text-wrap-mode: wrap and text-wrap-style: pretty|balance but Chrome only understands the shorthand syntax
this is a perfect feature to illustrate progressive enhancement. you don't even need to use @supports

Speaker notes

Feature detection
(gracefully falls back without)@supports

:where(h1,h2,h3,h4,h5,h6) {
/* widely supported CSS styles here */

}

@supports (text-wrap: pretty) {
:where(h1,h2,h3,h4,h5,h6) {
/* newly available CSS styles here */

}
}

SCROLL DRIVEN
SCROLL DRIVEN

ANIMATIONSANIMATIONS

this is actually a trip down the rabbit hole
Scroll driven animations! super fluid scrub animations based on scroll and element entering into/out of viewport
we get a new timeline, 2 new functions (scroll() and view()) and a couple of new CSS properties (scroll-timeline and animation-range)
we also get butter smooth animations running off the main thread with no scroll hijacking, and no need for debouncing or throttling events taking away precious resources from the main
thread
we don't get (yet) scroll driven animations

Speaker notes

** must read **

https://scroll-driven-animations.style

demos and tools + a full video course to explore rather complex concepts related to scroll driven animations, such as understanding how to limit the range of the animation, how to scope the
same animation to multiple elements, and a how to replicate popular effects that used to require expensive JS with a few lines of CSS

Speaker notes

Scroll driven animations extend CSS animations

animation:
spin 1s
ease-in-out
infinite

@keyframes spin {1
to {2
rotate: y 1800deg;3

}4
}5
.animate-me {6

7
8
9

10
}11

builds on CSS animations we're all familiar with

Speaker notes

Scroll driven animations extend CSS animations

animation: spin linear;
animation-timeline: scroll(block root);
/* animation-range: 50% 100%; */

@keyframes spin {1
to {2
rotate: y 1800deg;3

}4
}5
.animate-me-scroll {6

7
8
9

}10

again, we get a new timeline, 2 new functions (scroll() and view()) and a couple of new CSS properties (scroll-timeline and animation-rangeboth shorthand for scroll-
timeline-axis scroll-timeline-name and animation-range-start animation-range-end respectively)

Speaker notes

Resources

HTML CSS
E D I T O N

Result

1× 0.5× 0.25× Rerun

(partially) Replaces: GSAP, Lenis

scroll()

https://codepen.io/michellebarker/pen/JjxBzvO

we're tracking the root scroller without customizations, so our timeline scrubs from the top of the document to the bottom.

Another great pen by Michelle Barker

Speaker notes

https://codepen.io/michellebarker/pen/JjxBzvO

https://codepen.io/michellebarker/pen/JjxBzvO

Lucky Wood 2019

Gnostic Will 2012

Cyber Blue 2011

Loyal Royal 2015

Bold Human 2014

🔀1/2

🏠

ℹ

scroll()

https://scroll-driven-animations.style/

Resources

HTML SCSS
E D I T O N

Result

1× 0.5× 0.25× Rerun

view()

https://codepen.io/pecus/pen/RwXpBed

a basic demo, progressively enhanced, that lets you appreciate how smooth these animations are and how you can go bonkers with ideas and effects

Speaker notes

https://codepen.io/pecus/pen/RwXpBed

https://codepen.io/pecus/pen/RwXpBed

Measure direction and velocity…

Resources

HTML CSS
E D I T O N

Result

1× 0.5× 0.25× Rerun

https://codepen.io/pecus/pen/dyxWOxR

using @property and some basic CSS math (abs() and sign()), we can track scroll direction and scroll speed/velocity

Speaker notes

https://front-end.social/@bramus/113220884843667438

https://codepen.io/pecus/pen/dyxWOxR

https://front-end.social/@bramus/113220884843667438
https://codepen.io/pecus/pen/dyxWOxR

… for unthinkable CSS-only effects

Resources

HTML CSS JS
E D I T O N

Result

1× 0.5× 0.25× Rerun

https://codepen.io/fcalderan/pen/LYKwyyd

an incredible hack by fabrizio calderan improving a demo by bramus van damme using transition-delay and custom properties

Speaker notes

https://front-end.social/@bramus/113220884843667438

https://codepen.io/fcalderan/pen/LYKwyyd

https://front-end.social/@bramus/113220884843667438
https://codepen.io/fcalderan/pen/LYKwyyd

Baseline? not yet

Feature detection

selector {
/* widely supported CSS styles here */

}

@supports (animation-timeline: scroll()) {
@media (prefers-reduced-motion: no-preference) {
/* ensure animations are enabled only for users that did not signal a preference to avoid rapid mo
selector {

/* newly available CSS styles here */
}

}
}

IT'S ALL ABOUT CSS
IT'S ALL ABOUT CSS

so we've gone through some of the newest features of CSS covering animations, Typographically correct wrapping, counter selectors and parent selectors for adaptive intrinsic layouts that
react conditionally to page states or content count.

but THERE. IS. SO. MUCH. MORE.

Speaker notes

These are only some of the newest additions to CSS. Look at this list!

Color Functions would require a whole talk themselves. Container Queries. Trigonometric functions!

It's really a fantastic moment to be a front-end developer and embracing the platform. With everything CSS can offer, maybe shifting the weight a little bit from JavaScript.

Speaker notes

Do stuff
Teach stuff

Involve everyone

they are great oportunities for modernizing, improving and hyping your code and the design of your sites. so *DO STUFF
encourage to use CSS, to discover, to build and experiment
watch videos, read articles, attend conferences, talk to peers, organize meetups, ask your company to host workshops TEACH STUFF
champion CSS and build excitement
progressive enhancement: educate clients and bosses and negotiate with designers INVOLVE EVERYONE
ask designers to move to CSS, to experiment with you. Share demos, build pens, mix ideas

Speaker notes

I DIDN’T KNOW CSS
I DIDN’T KNOW CSS

COULD DO THAT!
COULD DO THAT!

This talk's title is "I didn't know CSS could do that!". But maybe, now that you've seen a few of the things the latest CSS can, you can say "I didn’t know I could do that in CSS!"

Speaker notes

I DIDN’T KNOW
I DIDN’T KNOW II COULD COULD

DO THAT WITH CSS!
DO THAT WITH CSS!

Demos: https://codepen.io/collection/ZMgzbg

@pecus@mastodon.social

THANK YOU

