Distributed and scalable platform for collaborative analysis of massive time series data sets

Eduardo Duarte (@eddrt)
Introduction

• metrification of devices;
 • e.g. wearable gadgets, real-time IoT sensors, Smart Home devices

• annual data acquisition rate:
 • 2016 – 1.2 zb/y;
 • 2021 – 3.3 zb/y;

• requirements for digital data processing and storage are increasing exponentially;

• Volume, Variety and Velocity;

• Value and Veracity.
Introduction

Time series analysis

- some metrics only have meaning when observed as a pattern over time;
- **time series** can be found in almost every aspect of human life;
- most domains produce massive amounts of series data;
- analysis is more agile when within a software solution.
Introduction Time series visualization

• can be a very challenging task:
 • data sets commonly have high cardinality and complexity;

• comparative visualization tasks:
 • dashboard applications like Timelion, Grafana and Freeboard

• most analysis applications are built as web applications.
Introduction

Annotation

• realistic analysis tasks involve collaboration and knowledge-sharing between human curators;

• annotations facilitate knowledge-building and decision-making in analysis processes.
Proposal

• data-intensive architecture and web application for collaborative time series analysis;

• use most appropriate open-source tools for querying, storing and displaying time series and annotations;

• distributed architecture to handle high quantities of concurrent usage:
 • E+C for annotations, users and the knowledge base;
 • E+L for series.

• prototype tested with HVAC data set from 1000 boilers over 1.3 years.
Proposal Data model

• time series has a measurement and a data source;

• annotations have a parent type, a point or ranged segment of time, and a set of affected series;

• projects restrict a set of collaborators to a segment of time, a set of series, and an annotation scope.
Proposal Data management

• polyglot persistence model:
 • time series are stored in InfluxDB, ontology is stored in PostgreSQL;
 • central backend enforces data access logic and conceals the real location of the data.
Proposal Data management

• overall traffic workload is distributed, but querying simultaneous data types can lead to bottlenecks;

• links are added on each data point and propagated to the TSDBMS on ontology updates.
Proposal Architecture

User
Desktop Browser
Load Balancer
Desktop Browser
Frontend
ReactJS in TypeScript

User
Desktop Browser

CrUD
REST API
Spring Web
User task checker
Spring Scheduling

Queries and storage
Spring JPA and Hibernate

Backend
Spring Boot in Java

Cache
Redis

(reads)

Queue
RabbitMQ

(writes)

Time series
InfluxDB

Ontology
PostgreSQL
Proposal

Architecture

User

Desktop Browser

Frontend
ReactJS in TypeScript

Load Balancer

Desktop Browser

Distributed Queue RabbitMQ

User task checker
Spring Scheduling

CRUD
REST API
Spring Web

Queries and storage
Spring JPA and Hibernate

Backend
Spring Boot in Java

Queue
RabbitMQ

(reads)

writes)

Cache Redis

Time series InfluxDB

Ontology PostgreSQL

DATA 2019, Prague, Czech Republic, 26-28 July, 2019
Proposal Architecture

User → Load Balancer → Distributed Queue → Subscribe/Poll → Replicated backend servers
Proposal Architecture

- the backend opens processing pipelines for each request;
- authentication:
 - auth. session tokens are JWTs with an expiration date.
- validation stage checks for invalid contents or constraint violations
Proposal Architecture

• updates, deletions and rollbacks are made asynchronously:
 • user receives a simulated snapshot with proposed changes;
 • validation stage ensures that the update will likely be committed;
 • caveat: unexpected errors cannot be sent to the user.
Proposal Architecture

• users make changes based on the observed data;
• if two users update the same record at the same time -> race condition!!!;
• optimistic-locking: last-modified dates checksum
• Spring JPA provides abstraction layers for PostgreSQL queries (hot-swap)
Proposal

Annotations

• snakes: arcs traced over series’ curves;
• paint over existing points, interpolate when in-between;
• intersection handling (nesting).
DEMO
Evaluation Time series in PostgreSQL

• as granularity increases, Consistency is harder to attain;

• put all data in a single ACID-compliant RDBMS:
 • linking logic is built-in through the relational model;
 • better Consistency handling.

• benchmark read-write performance
Evaluation Time series in PostgreSQL

READ PERFORMANCE

DATA 2019, Prague, Czech Republic, 26-28 July, 2019
Evaluation

Time series in PostgreSQL

WRITE PERFORMANCE

Write time (seconds) Disk usage (MB) RAM usage (MB)

DATA 2019, Prague, Czech Republic, 26-28 July, 2019
Conclusion

• improved collaboration workflow:
 • enhanced model for building smaller scopes of analysis;
 • better visualization for comparison of data;
 • stronger annotation readability and flexibility of expression;
 • scalable architecture that adjusts to data set size and traffic amount;
 • linearizability and strongly validated contributions;

• the open REST API enables extensibility: more input and output modules can be added.
https://www.edduarte.com/time-series-analysis-platform/