Interactive Data Exploration

With PyFlink and Zeppelin Notebooks

Marta Paes (@morsapaes)

Developer Advocate

@ ververica

About Ververica

Original Creators of
Apache Flink®

2 @morsapaes

Enterprise Stream Processing
With Ververica Platform

€

Alibaba G.roup

Part of
Alibaba Group

©

Apache Flink

Flink is an open source framework and distributed engine for stateful stream processing.

i - '

Flink Runtime
: == 1THIHIRLn
— Stateful Computations over Data Streams
—)

3 @morsapaes Learn more: flink.apache.org @

https://flink.apache.org/?utm_source=cp&utm_campaign=wad2020

Apache Flink

Flink is an open source framework and distributed engine for stateful stream processing.

High ED
Performance Tolerance

Stateful
Processing

Flexible

APIs

—)
TRRRnnnnn é Flink Runtime
—)

Stateful Computations over Data Streams

4 @morsapaes

—)

== 1THIHIRLn
—)

Learn more: flink.apache.org @

https://flink.apache.org/?utm_source=cp&utm_campaign=wad2020

Use Cases

This gives you a robust foundation for a wide range of use cases:

Flink Runtime — I
i‘ r‘ —) Stateful Computations over Data Streams
. ad — 0 _

5 I @morsapaes Learn more: flink.apache.org @

https://flink.apache.org/?utm_source=cp&utm_campaign=wad2020

Use Cases

Classical, core stream processing use cases that build on the primitives of streams, state and time.

__ r1 Flink Runtime —
il —) Stateful Computations over Data Streams
. ad — 0 _

6 I @morsapaes Learn more: flink.apache.org @

https://flink.apache.org/?utm_source=cp&utm_campaign=wad2020

Stateful Stream Processing

Classical, core stream processing use cases that build on the primitives of streams, state and time.

e Explicit control over these primitives
e Complex computations and customization

e Maximize performance and reliability

Example Use Cases

NETFLIX

ING

aws
N’

Large-scale Data Pipelines

ML-Based Fraud Detection

Service Monitoring & Anomaly Detection

7 @morsapaes

N

https://www.youtube.com/watch?v=9y27FJgz5-M
https://www.youtube.com/watch?v=p8qSWE_nAAE
https://www.ververica.com/blog/real-time-fraud-detection-ing-bank-apache-flink?utm_source=cp&utm_campaign=wad2020

Use Cases

More high-level or domain-specific use cases that can be modeled with SQL or Python and dynamic tables.

Flink Runtime — I
i‘ r‘ —) Stateful Computations over Data Streams
. ad — 0 _

8 I @morsapaes Learn more: flink.apache.org @

https://flink.apache.org/?utm_source=cp&utm_campaign=wad2020

Streaming Analytics & ML

More high-level or domain-specific use cases that can be modeled with SQL or Python and dynamic tables.

e Focus on logic, not implementation
e Mixed workloads (batch and streaming)

e Maximize developer speed and autonomy

Uber criteol..

Unified Online/Offline Model Training E2E Streaming Analytics Pipelines ML Feature Generation

9 @morsapaes

®

https://youtu.be/gSRjTm4AHjk
https://www.ververica.com/blog/flink-for-online-machine-learning-and-real-time-processing-at-weibo
https://youtu.be/nGOrFtPfci0

More Flink Users

- v ® <>
Reibob @ €F aws il FTHzn bolcom®™ busesgy

Capira/:o,w’w CON‘% AST) HanSight @ DYALLEMC O DiDi ebay ERICSSON Z

JOHNDEERE

oldman . m
?) gojek Saehs A S N O
® goj S wg ING & lyrt 7> KLAVIYO OB
OARBYS.. oppo M4 \NETFLIX dRazorpay g% splunk>

stripe Pelefonica Tencent i theTradeDesk Uber wérkday. m I\

Xlaomi.com

10 @morsapaes Learn More: Powered by Flink, Speakers — Flink Forward San Francisco 2019, Speakers — Flink Forward Europe 2019 @

https://flink.apache.org/poweredby.html?utm_source=cp&utm_campaign=wad2020
https://sf-2019.flink-forward.org/speakers
https://europe-2019.flink-forward.org/speakers

PPN

©

Python is at the core of Data Science

What data science frameworks do you use in

addition to Python?

@morsapaes

62%
51%
43%
37%
33%
32%
23%
23%
14%
1%
4%
2%
1%
2%
25%

NumPy
Pandas
Matplotlib
TensorFlow
SciPy
SciKit-Learn
PyTorch
Keras
Seaborn
NLTK
Gensim
Theano
MXNet
Other

None

Mature analytics stack, with libraries that are

fast and intuitive.

Source: JetBrains' Developer Ecosystem Report 2020 @

https://www.jetbrains.com/lp/devecosystem-2020/python/

Python is at the core of Data Science

What data science frameworks do you use in
addition to Python?

62% NumPy 1995

51% Pand

EntlEs Mature analytics stack, with libraries that are
43% Matplotiio
37% TensorFlow fast and intuitive.

33% _SciPy

32% SciKit-Learn
23% PyTorch
23% Keras
14% Seaborn
11% NLTK

4% Gensim

2% Theano

1% MXNet
2% Other
25% None

13 @morsapaes Source: JetBrains' Developer Ecosystem Report 2020 @

https://www.jetbrains.com/lp/devecosystem-2020/python/

Python is at the core of Data Science

What data science frameworks do you use in
addition to Python?

62% NumPy
51% Pand . T .
andas Mature analytics stack, with libraries that are
43% Matplotiio
37% TensorFlow fast and intuitive.
33% _SciPy

32% SciKit-Learn
23% PyTorch
23% Keras

14% Seaborn

figer SRS Older libraries are mostly restricted to a data
4% Gensim
2% Theano size that fits in memory (RAM), and designed to
1% MXNet .

¢ run on a single core (CPU).
2% Other
25% None

14 @morsapaes @

15

This is a problem.

@morsapaes

©

ssssssssssss

©

17

But you still want to use these powerful libraries, right?

@morsapaes

©

Why PyFlink?

@morsapaes

©

Why PyFlink?

19 @morsapaes

Expose the functionality of Flink to Python users

A

©

Why PyFlink?

Distribute and scale the functionality of Python through Flink

20 @morsapaes Learn more: The Integration of Pandas into PyFlink. @

https://flink.apache.org/2020/08/04/pyflink-pandas-udf-support-flink.html

Flink can...scale?

incl. sub-second updates to the GMV dashboard

Real-time Data Applications

Search Recomm. Ads
Infrastructure Data Size
>5K 985PB
nodes

State Size (Biggest)

>500K 100TB

CPU cores

Bl

Security

Throughput (Peak)

Latency

2.5B

events/sec

Sub-sec

Learn more:

Double 11/ Singles Day Ff\

. [B[o):[02):08)

L 'mﬁaﬂﬁm m ~
va‘mnwwinuKM“”"“”“": i < {z

&

Optimizations in Blink Runtime for Global Shopping Festival at Alibaba u.~

https://www.youtube.com/watch?v=KPXWg-MllFQ

PyFlink in a Nutshell”

» Native SQL integration
» Unified APIs for batch and streaming

« Support for a large set of operations (incl. complex joins, windowing, pattern matching/CEP)

22 @morsapaes * As of Flink 1.11, only the Table APl is exposed through PyFlink. The low-level DataStream APl is on the roadmap (ELIP-130). @

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=158866298

PyFlink in a Nutshell”

» Native SQL integration
» Unified APIs for batch and streaming

« Support for a large set of operations (incl. complex joins, windowing, pattern matching/CEP)

Execution
Streaming
UDF Support
+UDAF (WIP) +UDAF (WIP)

23 @morsapaes * As of Flink 1.11, only the Table APl is exposed through PyFlink. The low-level DataStream APl is on the roadmap (ELIP-130). @

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=158866298

PyFlink in a Nutshell”

» Native SQL integration
» Unified APIs for batch and streaming

« Support for a large set of operations (incl. complex joins, windowing, pattern matching/CEP)

Execution Native Connectors Formats ML Library (WIP)
-
Streaming & cSV o
Apache Kafka FileSystems Z
i
~ . orc Notebooks
UDF Support e
- Kinesis
A

%y
- ‘ &=

+UDAF (WIP) +UDAF (WIP) -w
Elasticsearch

Apache Zeppelin
+

24 @morsapaes * As of Flink 1.11, only the Table APl is exposed through PyFlink. The low-level DataStream APl is on the roadmap (ELIP-130). @

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=158866298
https://cwiki.apache.org/confluence/display/FLINK/FLIP-39+Flink+ML+pipeline+and+ML+libs

PyFlink in a Nutshell”

» Native SQL integration
» Unified APIs for batch and streaming

« Support for a large set of operations (incl. complex joins, windowing, pattern matching/CEP)

Execution Native Connectors Formats ML Library (WIP)
-
Streaming & cSV o
Apache Kafka FileSystems Z
i
~ . orc Notebooks
UDF Support e
- Kinesis
A

%y
- ‘ &=

+UDAF (WIP) +UDAF (WIP) -w
Elasticsearch

Apache Zeppelin

+

25 @morsapaes * As of Flink 1.11, only the Table APl is exposed through PyFlink. The low-level DataStream APl is on the roadmap (ELIP-130). @

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=158866298
https://cwiki.apache.org/confluence/display/FLINK/FLIP-39+Flink+ML+pipeline+and+ML+libs

eeeeeeeeeeee

BERR

alEN

©

Apache Zeppelin

Web-based notebook that provides an interactive and collaborative computing environment.

& E—
FIinl‘

o Support for a lot of interpreters

o Polyglot notes

"\Z e Built-in interactive visualizations

’ epark
Q o Pluggable notebook storage (e.g. git)

Multi-tenancy

27 @morsapaes

©

DEMO

,é Zeppelin Notebook v Job anonymous ~

ODSC Europe 2020 > iz s @+ &+ @o = v @ 0 %@ defat-

FINISHED [:{ BB &

Exploring the Movie Lovers on MUBI dataset (Kaggle)

We will be looking at three different files:

1. mubi_movie_data.csv - Data from all movies registered on Mubi.
2. mubi_ratings_data.csv - Data from ratings on Mubi for users who did not set their profile in private mode (~15 million rows).

3. mubi_ratings_user_data.csv - Aggregated data from users for a specific day.

Flink
We will use a mix of the %flink.pyflink and %flink.bsql interpreters. For %flink.pyflink, Zeppelin creates the following environment variables for us:

¢ s_env: StreamExecutionEnvironment
e b_env: ExecutionEnvironment
¢ st_env: StreamTableEnvironment

¢ bt_env: BatchTableEnvironment

For simplicity, we're batch-reading files stored locally (also to keep my machine from exploding during the presentation!). The cool thing about PyFlink is that you
can e.g. replace the existing source tables with Kafka-backed ones that continuously consume data and not have to change any of the code (other than bt_env to
_st_env).

Took 0 sec. Last updated by anonymous at September 18 2020, 8:24:24 AM.

28 | @morsapaes @

DEMO

Option 1. Create table using %flink.pyflink
%flink.pyflink

= FLINK JOB FINISHED [>

c_exp_drop_movies =
DROP TABLE IF EXISTS mubi_movies

c_exp_movies =
CREATE TABLE mubi_movies (
movie_id INT,
movie_title STRING,
movie_release_year STRING, --Needs cleanup, so bringing in as STRING
movie_url STRING,
movie_title_language STRING,
movie_popularity INT,
movie_image_url STRING,
director_id STRING,
director_name STRING,
director_url STRING

--Needs cleanup, so bringing in as STRING

D]

WITH C
'connector' = 'filesystem',
'path' = '/Users/martapaesmoreira/Desktop/0DSC_data/mubi_movie_data.csv',
'format' = 'csv'

bt_env.execute_sql(c_exp_drop_movies)
bt_env.execute_sql(c_exp_movies)

mubi_movies = bt_env \
.from_path("mubi_movies") \

.select("movie_id.count as movie_cnt™)

z.show(mubi_movies)

fe

B i ¢ M | v settings v

movie_cnt

226575

Took 6 sec. Last updated by anonymous at September 16 2020, 8:39:51 PM. (outdated)

29 @morsapaes

Option 2. Create table using %flink.bsql
%flink.bsql

= FLINK JOB FINISHED [>

DROP TABLE IF EXISTS mubi_movies;

CREATE TABLE mubi_movies (
movie_id INT,
movie_title STRING,
movie_release_year STRING, --Needs cleanup, so bringing in as STRING
movie_url STRING,
movie_title_language STRING,
movie_popularity INT,
movie_image_url STRING,
director_id STRING,
director_name STRING,
director_url STRING

--Needs cleanup, so bringing in as STRING

)

WITH C
'connector' = 'filesystem’',
'path' = '/Users/martapaesmoreira/Desktop/0DSC_data/mubi_movie_data.csv',
'format' = 'csv'

--Get a record count.
SELECT COUNT(*) movie_cnt FROM mubi_movies;

8 | | ¢ M 2 & + settings~

movie_cnt ~

226575

Took 5 sec. Last updated by anonymous at September 16 2020, 5:03:21 PM. (outdated)

©

DEMO

30

Query the Movie Table FINISHED [> 22

We will use PyFlink to query the mubi_movies table and get the average movie popularity per movie release year. What do we see?

1. There are two clear outlier years when it comes to popularity (1878 and 1902). If you check further, there is only one movie release in each of these years on Mubi (“Sallie Gardner at a Gallop” and "A
Trip to the Moon") — they're just really popular!

2. The 1920s were a busy period for silent movie releases, which seem pretty popular with Mubi users.

3. The 1920s-1960s are also considered the golden era of Hollywood, so that can also explain the increased popularity of movies released in this period.

If you visit the Flink Web Ul once you click “Run”, you will see the job that generated from this code!

Took 0 sec. Last updated by anonymous at September 18 2020, 8:44:26 AM,

AVG Movie Popularity/ Release Year = FLINK JOB FINISHED [}
%flink.pyflink
movies_avg_popularity = bt_env \
.from_path("mubi_movies") \
.group_by("movie_release_year") \
.select("movie_release_year.substring(1,4) AS movie_year,movie_release_year.substring(1,3)+\'@s\' AS movie_decade, movie_popularity.avg AS popularity_avg")
7.show(movies ava nonularitv)

B o ¢ M & |~ | settings~

@2000s 1950s @ 1920s 1930s @ 1960s 1990s @ 1980s 1970s @ 1940s 1910s @1900s @2010s @ 1890s 1880s @ 2020s 1870s 0s

7
60
50
1902
40— M 1900s 44 OO
=) - @
® o0 %o
®e (S) . ®)))
b © 000, 0
e) o ® ® o e® %o 070 000,
o) = @ (¢} @
. X3 ®600%0 o
[LLbrrrrrnd [L rrrnd SEELELAL AN EELEFLELFES LLrrrrrrnd ?9
1900 1920 1940 1960 1980 2000 2021

@morsapaes

DEMO

Active Users over time FINISHED D> I{ B @&

Measure: rating activity.

The number of active users in the Mubi platform has seen a steady increase over the years, with a decline followed by steadybut lower activity in comparison, from 2012. It's funny to
see that:

1. There is a peak active users on January 1st every year, which is likely when people are making their “BEST OF YEAR X" lists.
2. There was a huge boost in active users when the Corona pandemic hit (2020-03).

Took 0 sec. Last updated by anonymous at September 18 2020, 8:45:36 AM.

%flink.pyflink =FLINKJOB FINISHED [> X BB &
active_users = bt_env \

.from_path("mubi_ratings") \

.group_by("rating_timestamp_utc.dateFormat('YYYY-MM') AS rating_ym") \

.select("rating_ym, user_id.count AS user_count") \

.order_by("rating_ym")

z.show(active_users)

[:: PR

. & |+ | settings v

@Stacked OStream O Expanded @ user_count
334,287

300,000
250,000
200,000
150,000
100,000

50,000

0
1970-01 2008-11 2009-09 2010-07 2011-05 2012-03 2013-01 2013-11 2014-09 2015-07 2016-05 2017-03 2018-01 2018-11 2019-09 2020-12

31 @morsapaes

DEMO

Top 10 Rated Movies in Year X SFLINK JOB FINISHED D> 3¢ E2
%flink.pyflink

1_top_10_year = bt_env \
.from_path("mubi_movies") \
.select("movie_id, movie_title, movie_release_year")

r_top_10_year = bt_env \
.from_path("mubi_ratings") \
.filter("rating_timestamp_utc.dateFormat('YYYY')=""+z.textbox("year", "2020")+"'") \
.group_by("movie_id") \
.select("movie_id AS m_id, rating_score.avg AS r_avg, critic.count AS c_critic") \
.where("r_avg.isNotNull")

top_10_year = 1_top_10_year \
.join(r_top_10_year) \
.where("movie_id=m_id") \
.select("movie_title, movie_release_year.substring(1,4) AS movie_year, r_avg AS avg_rating_score, c_critic AS n_user_critics") \
.order_by("avg_rating_score.desc, n_user_critics.desc") \
.fetch(10)

z.show(top_10_year)

year

2019

Bl ¢ M 2l & v settings~

movie_title v movie_year v avg_rating_score v n_user_critics v
On Cinema at the Cinema 2012 5.0 6
The Day Today 1994 5.0 6
The Peter Serafinowicz Show 2007 5.0 4
Dans I'obscurite 2007 5.0 4
Joe Hisaishi Budokan Studio Ghibli 25 Years 2008 5.0 4
32 @morsapaes

©

DEMO

Using Pandas (and other Python libraries)

Conversion .toPandas()

FINISHED [> £

One way to use PyFlink with Pandas is to first use it to reduce the amount of data we want to act upon (which might be a considerably small subset of the original dataset), taking

advantage of how performant PyFlink is even on the largest of largest datasets; and then convert the resulting table into a Pandas DataFrame .

Took 0 sec.

Last updated by anonymous at September 18 2020, 9:29:13 AM.

Plotting a Histogram
%flink.pyflink

ratings_1820 = bt_env \
.from_path("mubi_ratings") \
.filter("rating_timestamp_utc.dateFormat('YYYY').in('2018",'2019",'2020')") \
.select("rating_timestamp_utc.dateFormat('YYYY') AS rating_year, rating_score")

pdf =

ax = pdf.hist(column="rating_score', by='rating_year', bins=5, grid=False, figsize=(12,8), color='#3171A9', zorder=2, rwidth=0.9)

ratings_1820.to_pandas()

z.show(ax)

[[<AxesSubplot:title={'center':'2018'}>
<AxesSubplot:title={'center':'2019'}>]

[<AxesSubplot:title={'center"’

300000
250000
200000
150000
100000
50000
0

33 @morsapaes

2018

:'2020'}> <AxesSubplot:>]]

400000

300000

200000

100000

2019

=FLINK JOB FINISHED [> ;&

©

Want to learn more about Flink for Data Science?

#flinkforward

Join the Apache FIink'”‘c‘om'munity virtually at
Flink Forward Global 2020! |

Register for free: FLIN K/D\E\é
flink-forward.org/global-2020 Fo RWAR D

October 19-22, 2020

®

34 @morsapaes

Thank you, ODSC Europe!

Follow me on Twitter: @morsapaes

Learn more about Flink: https://flink.apache.org/

@ ververica

https://flink.apache.org/

