The Wonders and Woes of
Webhooks

Kubernetes London

September 19" 2023

= &8
1 X0
W)

I’'m Marcus Noble, a platform engineer
at @ Giant Swarm

I’'m found around the web as
AverageMarcus in most places
| and @Marcus@k8s.social on Mastodon

~6 years experience running Kubernetes
in production environments.

f \/

5

My Relationship with Webhooks
- astory in 3 acts

Act #1

Introduction, backstory and the ,~wonders

Act #2

The conflicts, struggles and woes @

Act #3

The resolution and the future @

@ Giant Swarm

Webhooks in Kubernetes

Kubernetes has three main types of webhooks:
Beta

ll\ValidatingWebhookConfigurationINgeeme e AR R raGene ricAdnissioniebhook

introduced in v1.7) G Beta

[IMutatingWebhookConfigurationgRigiigele[Vlet=Ye RIa VA ")
' ICustomResourceConversiongalsiigelelslel=Ye Nial A My k]

We’re going to focus on the first two and ignore the [SEuellR=FYe]i[get=101e]g\A-Y gHKe]y| fOI the
purpose of this talk.

@ Giant Swarm

Dynamic Admission Control

e Both Validating and Mutating admission webhooks come
under the responsibility of the Dynamic Admission controller
Wlthln ap|Server. f CREATE, UPDATE, DELETE & CONNECT

e Can be triggered by (almost) all API operations against

(almost) all Kubernetes resources.

LI iRl admissionregistration.k8s.io/v AR

e Currently enabled by default by the default value of the

--enable-admission-pluginsEldEEINEIRiElR

@ Giant Swarm

Dynamic Admission Control

In addition to compiled-in ission plugins, admission plugins can be developed as
extensions and run as webhooks configured at runtime. This page describes how to build,
configure, use, and monitor admission webhooks.

What are admission webhooks?

Admission webhooks are HTTP callbacks that receive admission requests and do something
with them. You can define two types of ission webhooks, validati ission webhook
and mutating admission webhook. Mutating admission webhooks are invoked first, and can
modify objects sent to the API server to enforce custom defaults. After all object
modifications are complete, and after the incoming object is validated by the API server,
validating admission webhooks are invoked and can reject requests to enforce custom
policies.

Note: Admission webhooks that need to guarantee they see the final state of the object
in order to enforce policy should use a validating admission webhook, since objects can
be modified after being seen by mutating webhooks.

Experimenting with admission webhooks

are ially part of the cluster control-plane. You should write and
deploy them with great caution. Please read the user guides for instructions if you intend to
write/deploy production-grade admission webhooks. In the following, we describe how to
quickly experiment with admission webhooks.

kubernetes.io/docs/reference/access-authn-
authz/extensible-admission-controllers/

Purpose / Use Cases

Defaulting

Policy Enforcement

Best Practices

Problem Mitigation

@ Giant Swarm

Defau'ting o Adding ELEILVERRIIJ g2 ES Wwhen images from private

reqgistries are used

e Generating the image registry secret when new
namespaces are created

® Injecting a sidecar into pods (e.g. Alstio)

® Setting default resource limits when not set (alternative to
Limi tRange)

® Inject proxy env vars into pods - e.qg. ,
NO_PROXY

&® Giant Swarm

Policy Enforcement ® Prevent using image tag or enforce the use of a
SHA image tag

® Require resource limits to be set on all pods

® Block large container images (e.g. don’t pull container
images >1Gb)

® Prevent use of deprecated Kubernetes APIs (e.g.

batch/vibetal)

® Block use of [jlefadz-kda!

® Replace old PSP functionality not supported by the new

Pod Security Admission

&® Giant Swarm

BeSt Practices ® Enforce standard labels / annotations on all resources
® Require pod probes be set

® Restrict allowed namespaces

e Require a [eJsDhE]gV]oysXelgl>{Sle[e[=}u tO be set

e Replace all pods image registries with an in-house image

proxy / cache.

&® Giant Swarm

Problem Mltlgatlon ® Block nodes joining the cluster with known CVEs based
on the kernel version (e.g. CVE-2022-0185)

® Prevent custom nginx snippets from being used
(CVE-2021-25742)
® |nject Log4Shell mitigation env var,

LOG4J_FORMAT _MSG_NO_LOOKUP SHlgite}=1|Ne]elef

(CVE-2021-44228)

e Block binding to the cluster-admin role

e Disallow privilege escalation

&® Giant Swarm

Example Webhook

apiVersion: admissionregistration.k8s.io/v1 objectSelector:
kind: ValidatingWebhookConfiguration matchlLabels:
metadata: app.kubernetes.io/owned-by: my-team
name: "example-webhook.acme.com" clientConfig:
webhooks : service:
- name: "example-webhook.acme.com" namespace: default
rules: name: example-webhook
- apiGroups: [""] path: /validate-pods
apiVersions: ["v1"] port: 443
operations: ["CREATE"]
resources: ["pods"]
scope: "*"
failurePolicy: fail
namespaceSelector:
matchExpressions:
- key: "kubernetes.io/metadata.
operator: NotIn
values: ["kube-system"]

P Giant Swarm

Example Webhook

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
name: "example-webhook.acme.com"
webhooks :
- name: "example-webhook.acme.com"
rules:
- apiGroups: [""]
apiVersions: ["v1"]
operations: ["CREATE"]
resources: ["pods"]
scope: "*"
failurePolicy: fail
namespaceSelector:
matchExpressions:
- key: "kubernetes.io/metadata.name"
operator: NotIn
values: ["kube-system"]

@@ Giant Swarm

For every resource created /
modified / deleted in the cluster the
Kubernetes apiserver checks for
webhook configurations with a

matching rule.

Example Webhook

The namespaceSelector and
rutes: objectSelector are used to further

- apiGroups: [""]
apiversions: ["v1"] filter what a webhook should apply
operations: ["CREATE"]
resources: ["pods"] tO.
scope: "*"
failurePolicy: fail
namespaceSelector:
matchExpressions:
- key: "kubernetes.io/metadata.name"
operator: NotIn
values: ["kube-system"]
objectSelector:
matchLabels:
app.kubernetes.io/owned-by: my-team
clientConfig:
service:
namespace: default

@@ Giant Swarm

Example Webhook

The failurePolicy property indicates
rutes: how unexpected errors are handled.

- apiGroups: [""]
ainersions:[[(';K;;E] Valid options are “fail’ and ‘ignore’
operations: [" ! . N e .
rgsources: ["pods"] Wlth fall belng the defaUIt.
scope: "*"
failurePolicy: fail
namespaceSelector:
matchExpressions:
- key: "kubernetes.io/metadata.name"
operator: NotIn
values: ["kube-system"]
objectSelector:
matchLabels:
app.kubernetes.io/owned-by: my-team
clientConfig:
service:
namespace: default

@@ Giant Swarm

Example Webhook

clientConfig describes what
failurePolicy: fail :
namespaceSelestor : endpoint the webhook should be
matchExpressions: called against_

- key: "kubernetes.io/metadata.name"
operator: NotIn
values: ["kube-system"]
objectSelector:
matchLabels:
app.kubernetes.io/owned-by: my-team

clientConfig:
service:
namespace: default
name: example-webhook
path: /validate-pods
port: 443

@@ Giant Swarm

Example API request

a Apply MutatingWebhookConfiguration

YAML :

—
create
update Mutating admission Validating admission
delete controllers Schema controllers

= = === | Validation | ===
api
AdmissionReview AdmissionReview
webhooks H webhooks H
Order not quaranteed Order not 9uamn7‘eed3

P Giant Swarm Salman Igbal did a great ignite talk covering this at DevOpsDays London

Wonders in the Wild

Examples of webhooks solving real problems

&P Giant Swarm Jobs @ =

Restricting cluster-admin permissions

o Marcus Noble * Feb 22,2022

This post originally appeared on https://marcusnoble.co.uk/.

If you've managed multi-user/multi-tenant Kubernetes clusters, then there's
a good chance you've come across RBAC (Role-Based Access Control)
RBAC provides a strong method of providing permissions to users, groups,
or service accounts within a cluster. These permissions can either be

cluster-wide, with ClusterRole, or namespace scoped, with Role. Roles can

Leveraging validating webhooks
to restrict the cluster-admin
beyond what was possible by
RBAC to block a bug in our CLI
tool.

@ Giant Swarm

All Policies
Log4Shell Mitigation
In response to CVE-2021-44228 referred to as Log4Shell, a RCE vulnerability

in the Log4j library, a partial yet incomplete workaround for versions 2.10 to
2.14.1 of the library is to set the environment variable

LOG4)_FORMAT_MSG_NO_LOOKUPS to "true”. While this does provide some

benefit by limiting exposure, there are still code paths which can exploit this
vulnerability. It is highly recommended to upgrade log4j as soon as possible.
See https://logging.apache.org/log4j/2 x/security.html for more details. This
policy will mutate all initContainers and containers in an incoming Pod to
add this environment variable automatically.

Policy Definition

/other/mitigate_logdshell/mitigate_log4shell.yam|

apiVersion: kyverno.io/vl
kind: ClusterPolicy
metadata:
name: logdshell-mitigation
annotations:
policies.kyverno.io/title: Log4Shell Mitigation
policies.kyverno.io/subject: Pod
kyverno.io/kyverno-version: 1.6.2
kyverno.io/kubernetes-version: "1.23"
policies.kyverno.io/category: Sample
policies.kyverno.io/description: >-

Mitigate the Log4Shell vulnerability
cluster-wide by injecting an env var
into all pods that disables the
vulnerable code path, made possible
by a mutating webhook.

A Istio

Simplify observability, traffic management, security,
and policy with the leading service mesh.

What is Istio? Solutions

Discover how a service mesh Learn how to build secure,
helps with many common reliable and scalable
challenges of a distributed applications with Istio.
architecture.

Learn more) (Learn more

Much of Istio’s power in the earlier days came
from its ability to have its own container running
in every pod in the cluster as a “sidecar”, made
possible with a mutating webhook.

The woes

What follows next are incidents where webhooks have caused clusters to break, to varying

degrees of severity, for myself, my team or others.

| mention specific tools for context only and not to call any out for being at fault.

The fault in the following scenarios isn’t always caused by webhooks but their fragility, and the

lengths one must go to make them resilient, often causes incidents to go from bad to worse.

@ Giant Swarm

Incident #1 - Kyverno and the faulty AZ

Kyverno is a fantastic tool that makes it very easy to create policies to be applied to almost everything in a

cluster. It does this by creating wide-catching Validating/Mutating webhooks.

Many of the policies are security-related (replacing old PSP functionality) and as such has a Vg1 kKe)Y
of Fail.

For resilience, the service behind the webhooks runs with at least 2 replicas and has some logic to de-register

the webhook when the last replica is removed from the cluster. Pod anti-affinity is in place to ensure the

replicas are scheduled onto different nodes.

@ Giant Swarm

Incident #1 - Kyverno and the faulty AZ

1. By chance, both pods were scheduled onto nodes within the same Failure Domain.

2. Something happened that caused that failure domain to fail. This could be an issue with the cloud provider, a
manual error accidentally deleting an ASG or maybe some routing changes that left that subnet inaccessible.

3. Both Kyverno pods are suddenly missing from the cluster. The scheduler does its job and goes to schedule
two new pods.

4. The apiserver receives the API call to create the new pods, checks the list of MutatingWebhookConfigurations
and sees the entry for the Kyverno webhook.

5. A webhook request is made to the Kyverno service in the cluster but as no pods are running it returns an error

and blocks the new pod creation.

Impact = Cluster at-risk. Autoscaling up not working. Recreating broken pods not possible.

@ Giant Swarm

Incident #2 - Cluster upgrade

Our cluster has several Mutating and Validating webhooks in place, many of them targeting

Pods.

Some of the services behind the webhooks includes, but is not limited to, cert-manager, Instana,

Kyverno and Linkerd.

Most were installed using 3" party Helm charts with their default values.

@ Giant Swarm

Incident #2 - Cluster upgrade

1. An upgrade of the cluster to the latest Kubernetes version is triggered. The cluster has plenty of spare capacity
so a strategy of removing 25% of nodes at a time is used.

2. The upgrade is performed by making changes to the AWS Launch Template used by the nodes and then an
Instance Refresh is performed on the ASG.

The initial 25% of nodes includes 1 control plane and 2 worker nodes.

4. When the 3 new nodes are launched, they are unable to schedule any pods (including any for the control
plane). Logs for controller-manager taken from the host node include several instances of
occurred: failed calling webhook!

5. The instances in AWS were reporting as running so the Instance Refresh continues cycling the rest of the

cluster.

Impact = Cluster completely taken down if not caught early enough! @

@ Giant Swarm

Incident #3 - Scale-to-zero

A non-production cluster uses cluster-autoscaler to scale down worker nodes to 0 outside of

working hours to save on costs.

The control plane nodes remain (either as a single node or a HA cluster of 3).

Cluster-autoscaler is set to evict DaemonSets and a daily CrondJob is run to scale down all

Deployments to 0 replicas (and back up again in the morning).

The CronJob has a toleration for control plane nodes to ensure it can run again in the morning
with no workers.

@ Giant Swarm

Incident #3 - Scale-to-zero

1. For weeks the cluster scaling operated as expected, scaling to 0 and back up based on the
CronJob.

2. Ateam member deploys a new application that includes a

ValidatingWebhookConfigurationfMiule set to Fail.

3. The next time to CronJob runs, the cluster scales down all worker nodes, terminating all
pods of the newly installed application.

4. The following morning no worker nodes are created and all deployments are still setto 0

replicas.

Impact = No worker nodes and no deployments running.

@ Giant Swarm

Lessons Learned e All webhook services should have at least 2
replicas, a PodDisruptionBudget, anti-affinity
ensuring the pods end up in different failure domains
and health probes in place.

e Where possible, ensure that is

set to ignore kube-system.

e Where possible, make use of L Sa I xaes tO
only target what is required.

e Be careful when cycling nodes and not relying on
the cloud providers health checks alone.

e Avoid cluster-autoscaler scale-to-0 when using
webhooks without a EEREEEIRIREY set to ignore.

&8 Giant Swarm

So what can we,
as cluster operators,
do to avoid this?

So what can we,
as cluster operators,
do to avoid this?

Unfortunately not a whole lot.

A webhook to enforce
resilient webhooks

A webhook to enforce
resilient webhooks

&® Giant Swarm

NOPE!

It's not possible to have webhooks with rules
targeting webhooks. They’re the only resources

explicitly excluded in the code.

staging/src/k8s.io/apiserver/pkg/admission/plugin/webhook/rules/rules.go

func IsWebhookConfigurationResource (attr admission.Attributes) bool
{
gvk := attr.GetKind ()
gvk.Group == "admissionregistration.k8s.io" {

gvk.Kind == "ValidatingWebhookConfiguration" || gvk.Kind ==
"MutatingWebhookConfiguration" || gvk.Kind ==
"ValidatingAdmissionPolicy" || gvk.Kind ==
"ValidatingAdmissionPolicyBinding" {

Enforce best practices

&® Giant Swarm

While we can’t have a webhook watching other
webhooks, we can trigger based on the creation
of Services and Deployments and then check

for associated webhooks pointing at them.

BUT... this is only works if the webhook has
already been created in the cluster. Not much
use to us on first install as the deployments and

services need to exist first.

Instead, we must enforce best practices (min

replicas, PDB, anti-affinity, etc.) on all

deployments to ensure we catch all webhook

services.

Watchdog

&® Giant Swarm

Rather than preventing the potential issues from

being created, we can instead monitor for their

existence.

An operator running in our cluster watching all
webhooks, reporting metrics and alerting on

ones that don’t meet our minimum requirements.

Webhooks without a namespace selector Webhooks with less than 2 replicas Webhooks without a PodDisruptionBudget

High Risk Webhooks
webhook_type
jefault.awscluster.infrastructure.cluster.x-k8s.io mutating

jefault. ity.i uster.x-k8s.io mutating

efault. . cluster.x-k8s.io mutating

efault. ucture.cluster.x-k8s.io mutating

iefault. cluster.x-k8s.io mutating

mutating

mutating

mutating

Out of cluster services

&® Giant Swarm

It's possible to point a webhook configuration at
an external endpoint (URL) instead of a

Kubernetes Service resource.
This avoids the issues of the webhook blocking
its own creation as it's no longer managed as a

Pod.

Needs some other system to ensure the

application remains running, stays accessible

from the cluster and responds quickly.

The (possible) future

KEP-1872 - Manifest based registration of Admission webhooks

e No gap in enforcement between when apiserver is started and webhook configuration is created
e Prevent deletion of these webhook configurations similar to how static pods are handled
Introduced: 2020-04-21 | Status: Dropped

WebAssembly apiserver Admission Plugin

uuuuuuuuuuuuuuuuuuuuu
Europe 2022

e Less uncertainty from not relying on network

Less resource usage - no need for multiple controllers, .
° J P What If... Kube-Apiserver Could

all handled by the apiserver be Extended VidVebAssembly?
Introduced: KubeCon NA 22 | Status: Proof of Concept Flavio Castelli, SUSE

Wy
=,
e

@ Giant Swarm

The actual future

g~ There are a couple good blog posts about this on the Kubernetes blog. [Dne] [Jwo]
KEP-3488 - CEL for Admission Control
e Implement expression language support (CEL) into current validation mechanism, avoiding some
cases where webhooks would be needed
e Performed by the API server so doesn’t require pods/services to be alive for it to work
e Follows on from KEP-2876: CRD Validation Expression Language which introduced similar for
CRDs in v1.23
e Only for validating resources, not mutating
Introduced: 2022-09-01 | Status: Alpha in v1.26, Beta in v1.28

@ Giant Swarm

The actual future

KEP-3488 - CEL for Admission Control

This actually allows us to create policies to enforce more

resilient Validating and Mutating webhooks!

This still cannot be used on other

ValidatingAdmissionPoliciesiSiinllFIgeele[sR(e)
what we saw earlier for these new webhooks.
Good news - these are more stable by default as they

run in the apiserver!

P Giant Swarm

apiVersion: admissionregistration.k8s.io/v1beta1
kind: ValidatingAdmissionPolicy
metadata:
name: "block-mutating-webhooks"
namespace: default
spec:
failurePolicy: Fail
matchConstraints:
resourceRules:
- apiGroups: ["admissionregistration.k8s.io"]
apiVersions: ["v1"]
operations: ["CREATE"]
resources: ["'mutatingwebhookconfigurations"]
validations:
- expression: "object.metadata.name ==

apiVersion: admissionregistration.k8s.io/v1beta1
kind: ValidatingAdmissionPolicyBinding
metadata:
name: "block-mutating-webhooks"
spec:
policyName: "block-mutating-webhooks"
validationActions: [Deny]

&® Giant Swarm

The wonders:
e Defaulting
e Policy enforcement
e Best practices

e Issue mitigation

The woes:
e \Webhook services need to be resilient
e Cluster can be taken down if not careful
e \Very little can be done at a cluster level to ensure foolproof

webhooks are used

The future:
e Less reliance on webhooks for things like schema validation

e CEL-based policies for validating resources

&® Giant Swarm

Slides and resources available at:

https://go-get.link/kube-london

Thoughts, comments and feedback:

”—8 feedback@marcusnoble.co.uk

@ https://k8s.social/@Marcus

