
Just-in-Time with Numba

Presented by:
Ong Chin Hwee (@ongchinhwee)

25 April 2020
Remote Python Pizza

About me

Ong Chin Hwee 王敬惠

● Data Engineer @ ST Engineering

● Background in aerospace

engineering + computational

modelling

● Contributor to pandas 1.0 release

● Mentor team at BigDataX

@ongchinhwee

Bottlenecks in a data science project

● Lack of data / Poor quality data
● Data Preprocessing

○ The 80/20 data science dilemma
■ In reality, it’s closer to 90/10

○ Slow processing speeds in Python!
■ Python runs on the interpreter, not compiled

@ongchinhwee

Compiled vs Interpreted Languages

Written Code Compiler
Compiled Code

in Target
Language

Linker

Machine Code
(executable)LoaderExecution

@ongchinhwee@ongchinhwee

Compiled vs Interpreted Languages

Written Code Compiler Lower-level
bytecode

Virtual
MachineExecution

@ongchinhwee

What is Just-in-Time?

Just-In-Time (JIT) compilation

● Converts source code into native machine code at
runtime

● Is the reason why Java runs on a Virtual Machine (JVM)
yet has comparable performance to compiled languages
(C/C++ etc., Go)

@ongchinhwee

Just-in-Time with Numba

numba module

● Just-in-Time (JIT) compiler for Python that converts
Python functions into machine code

● Can be used by simply applying a decorator (a wrapper)
around functions to instruct numba to compile them

● Two modes of execution:
○ njit (nopython compilation of Numba-compatible code)
○ jit (object mode compilation with “loop-lifting”)

@ongchinhwee

Numba Compiler Architecture

Lower-level
bytecode

Numba
interpreter Numba IR

Lowering
(codegen)LLVM IR

@ongchinhwee

Type
inference

Typed
Numba IR

Machine
Code

(executable)

LLVM JIT
Compiler

IR: Intermediate Representation

Numba Compiler Architecture

Lower-level
bytecode

Numba
interpreter Numba IR

Lowering
(codegen)LLVM IR

@ongchinhwee

Type
inference

Typed
Numba IR

Machine
Code

(executable)

LLVM JIT
Compiler

Numba frontend

Numba backend

IR: Intermediate Representation

Practical Implementation

@ongchinhwee

Initialize File List in Directory

import numpy as np

import os
import sys
import time

DIR = './chest_xray/train/NORMAL/'

train_normal = [DIR + name for name in os.listdir(DIR)

 if os.path.isfile(os.path.join(DIR, name))]

No. of images in
‘train/NORMAL’: 1431

@ongchinhwee

With numba

from PIL import Image

from numba import jit

@jit

def image_proc(index):

 '''Convert + resize image'''

 im = Image.open(define_imagepath(index))

 im = im.convert("RGB")

 im_resized = np.array(im.resize((64,64)))

 return im_resized @ongchinhwee

With numba

from PIL import Image

from numba import jit

@jit

def image_proc(index):

 '''Convert + resize image'''

 im = Image.open(define_imagepath(index))

 im = im.convert("RGB")

 im_resized = np.array(im.resize((64,64)))

 return im_resized

Code runs in object mode (@jit)

@ongchinhwee

With numba

start_cpu_time = time.clock()

listcomp_output = np.array([image_resize(x) for x in
train_normal])

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('List comprehension completed in {}
seconds.\n'.format(
 total_tpe_time))

Python-only:
218.1 seconds

After compilation:
169.6 seconds

@ongchinhwee

With numba
import numpy as np

from numba import njit

@njit

def square(a_list):

 squared_list = []

 '''Calculate square of number in a_list'''

 for x in a_list:

 squared_list.append(np.square(x))

 return squared_list
@ongchinhwee

With numba
import numpy as np

from numba import njit

@njit

def square(a_list):

 squared_list = []

 '''Calculate square of number in a_list'''

 for x in a_list:

 squared_list.append(np.square(x))

 return squared_list

Code runs in no-Python/native
machine mode (@njit or
@jit(nopython=true))

@ongchinhwee

With numba

a_list = np.array([i for i in range(1,100000)])

start_cpu_time = time.time()

listcomp_array_output = square(a_list)

end_cpu_time = time.time()

total_tpe_time = end_cpu_time - start_cpu_time

sys.stdout.write(

 'Elapsed (after compilation) {}

seconds.\n'.format(total_tpe_time))

Python-only:
0.51544 seconds

After compilation:
0.00585 seconds

@ongchinhwee

Key Takeaways

@ongchinhwee

Just-in-Time with numba

● Just-in-Time (JIT) compilation with numba
○ converts source code from non-compiled languages

into native machine code at runtime
○ may not work for some functions/modules - these are

still run on the interpreter
○ significantly enhances speedups provided by

optimized numerical codes

@ongchinhwee

Reach out to
me!

: ongchinhwee
: @ongchinhwee
: hweecat
: https://ongchinhwee.me

And check out my slides on:

 hweecat/talk_jit-numba

