
building a component 
framework

@bartwaardenburg



the casus



~150 apps















“How can we work together on ~200 
front-end applications with ~30 

developers spread out over ~15 scrum 
teams?”



“We want developers to have as much 
autonomy as possible while maintaining a 

certain amount of alignment.”



the situation



“Every team builds their own applications 
based on their own front-end tech stack”



ui-related libraries in use

angular@1.5.x

preact@x.x.x
react@16.x.x

react@15.x.x angular@4.x.x

jQuery@x.x.x

angular@1.6.x

home-grown@x.x.x

moustache@x.x.x



the vision



“No two developers should have to build 
the same user interface component

twice.”



ecosystem wishes

single framework
well documented style guide

developer friendly
designer friendly

automated unit testing
automated regression testing

individually versioned components



“We need consolidation in frameworks 
to effectively work together”



framework wishes

focused on components
high performance

small size
pleasant learning curve

available in-house knowledge
large community

stable
server side rendering possible



in practice



preact

just user interface components
only ~3kb in size

if you know react you know preact
great templating with JSX

possibility to use react components
high performance in benchmarks

server side rendering possible

https://preactjs.com/
https://gist.github.com/Restuta/cda69e50a853aa64912d
https://cost-of-modules.herokuapp.com/result?p=preact@8.2.7
https://preactjs.com/guide/differences-to-react
https://jasonformat.com/wtf-is-jsx/
https://github.com/developit/preact-compat
https://hnpwa.com/
https://github.com/developit/preact-render-to-string


well documented style guide



developer friendly



developer friendly



developer friendly



designer friendly



automated unit testing



automated unit testing



automated regression testing



automated regression testing



automated regression testing



individually versioned components

each component has its own package.json and version
lerna & yarn workspaces handle all node modules

we use conventional commits for our commit messages
we use commitizen and commit-lint to help with commit messages

new semver component versions are derived from commit messages
changelogs are generated based on commit messages

components are privately hosted on our nexus repository

https://lernajs.io/
https://yarnpkg.com/lang/en/docs/workspaces/
https://conventionalcommits.org/
http://commitizen.github.io/cz-cli/
http://marionebl.github.io/commitlint/
https://semver.org/
https://github.com/conventional-changelog/conventional-changelog
https://blog.sonatype.com/using-nexus-3-as-your-repository-part-2-npm-packages


individually versioned components



individually versioned components



individually versioned components



individually versioned components



the future



future wishes

specific versioned styling for components (css-in-js)
cross browser regression testing

…



thanks

@bartwaardenburg


