
Coding Fast
and Slow

Prof. Daniel
Kahneman

Mar 5, 1934 – Mar 27, 2024

"for having integrated insights
from psychological research into

economic science, especially
concerning human judgment and

decision-making under uncertainty"

Economics?
× ECON101: People are rational; that’s why markets

work.
× - Nope, they aren’t; here’s 50 years of study.
× - Oh, wow, they really aren’t. It probably has a

profound effect on economics! Here’s a Nobel
Prize for ya!

× ECON101: People are rational; that’s why markets
work.

A bat and a ball cost $1.10 in total.

The bat costs $1 more than the ball.

How much does the ball cost?

How much does the ball cost?

0.10 + (1.00+0.10) = 1.20

0.05 + (1.00+0.05) = 1.10

Baruch Sadogursky - @jbaruch
× Head of DevRel at TuxCare (I am hiring!)
× Developer Productivity Nerd
× Development -> DevOps -> #DevProd

shownotes

× speaking.jbaru.ch
× Slides
× Video
× All the links!

Two systems x Fast
x Intuitive
x Automatic
x Emotional
x Cheap and eager

x Slow
x Analytical
x Controlled
x Logical
x Expensive and lazy

I recognize this
pattern!

Wait, let’s think
about that!

class UniqueWords {
public static void main(String[] args) throws IOException {

if (args.length != 1) {
throw new IllegalArgumentException("Invalid argument");

}
Set<String> words = new HashSet<>();
for (String line : Files.readAllLines(Path.of(args[0]))) {

// Ignore commented lines
if (!line.startsWith("#") || !line.startsWith("//")) {

Collections.addAll(words, line.split("\\W+"));
}

}
System.out.println(”Count of unique words: " + words.size());

}
}

You have “mental fuel”

Attention and Capacity Limits in Perception: A Cellular Metabolism Account
× BNIRS and oxCCO
× Cellular Metabolism as Mental Fuel
× Finite Energy Supply
× High Load Mode vs Low Load Mode

Which system do we use for coding?
x Fast
x Intuitive
x Automatic
x Emotional
x Cheap and Eager

x Slow
x Analytical
x Controlled
x Logical
x Expensive and Lazy

effortless

public class DiscountCalculator {
public static void main(String[] args) {

calculateDiscount(100, 15);
}

public static void calculateDiscount(double price, double discount) {
double finalPrice = price - (price * discount / 100);
System.out.println("The final price after a " + discount + "% discount

is: " + finalPrice);
}

}

How Many Triangles?

public class TaxCalculator {
public static void main(String[] args) {

calculateTax(100, 5);
}

public static void calculateTax(double amount, double taxRate) {
double totalAmount = amount + (amount * taxRate);
System.out.println("The total amount with tax: " + totalAmount);

}
}

The problem:
× You deplete your fuel by context-

switching
× You’re not in the flow because of

context-switching
× Loose-loose: you need more fuel

needed, but you have less fuel

When we are tired, we produce worse code
× "Developers are cutting corners on

quality when fatigued.”

(duh)

But We don’t know when to quit
x Default parole decision: deny
x Fewer paroles when judges are

tired/hungry
x Granting parole needs System 2 thinking
x Judges unaware of switching to System 1

Real-life outcome: you run on system one
x Fast
x Intuitive
x Automatic
x Emotional
x Cheap and Eager

x Slow
x Analytical
x Controlled
x Logical
x Expensive and Lazy

Real-life outcome: you run on system one
x Fast
x Intuitive
x Automatic
x Emotional
x Cheap and Eager

x Slow
x Analytical
x Controlled
x Logical
x Expensive and Lazy

10,000 hours of practice movesome system 2 activities to system 1
× Driving
× Golf
× Tennis
× Music playing
× Safety drills for fire fighters

I recognize this
pattern!

Wait, let’s think
about that!

Real-life outcome: you run on system one
x Fast
x Intuitive
x Automatic
x Emotional
x Cheap and Eager

x Slow
x Analytical
x Controlled
x Logical
x Expensive and Lazy

Which sucks less?

Bad code “OK” code

The problem of “ok code”

It looks “OK” to us
It looks

“OK” to PR
review

It looks
“OK” to

pipelines

System
1

System
1

System
1

Next thing
you know:

You have an
“ok” product

Invest in
The goal: Have enough mental fuel to last all day

Time Management Strategies
× Time Blocking
× Pomodoro Technique

Time Management Strategies
× Time Blocking
× Pomodoro Technique
× Task Batching

× Block time
× Batch tasks
× Allow access

Mindfulness and Cognitive Practices
× Mindfulness and Meditation
× Reflective Practices
× Single-tasking

Workspace and Interruption Management
× Workspace Organization
× Notification Management
× Prioritization Techniques

Physical and Mental Well-being
× Physical Exercise
× Breaks and Downtime

Caffeine nap

Drink caffeine

Set
alarm to

20
minutes

Reserves
taped!

Dark, cold,
quite
room

Coding practices
× Automate everything
× Shorten feedback loops
× Delegate to tools!

Use AI smartly!

Right tool – right job

Not all tools are created equal.
Go deep, not wide

ATM specialized beats

generalized

Local ai = control

Better control and privacy.

Agentic AI is RAD if it does the right thing

Coding practices
× Automate everything
× Shorten feedback loops
× Delegate to tools!
× Delegate to pros!

when to delegate Is the task
your core
expertise?

Do it!

Yes

Learn it!

Yes
Is it easy
to learn?

No

No

Do you
have time
to learn it?

Yes

Delegate! No

Save mental fuel!
× Time management
× Workspace management
× Mental wellbeing
× Engineer fewer interruptions
× Delegate when needed

THANKS!
Q&A and Twitter X/Bsky/Mastodon/LinkedIn ads:

x @jbaruch
x @Geecon
x speaking.jbaru.ch

