
Speaker : Horacio Gonzalez - @LostInBrittany

Hands on Web Assembly

Who are we?
Introducing myself and introducing OVH OVHcloud

Horacio Gonzalez

@LostInBrittany
Spaniard lost in Brittany,
developer, dreamer and
all-around geek

Flutter

OVHcloud: A Global Leader

Own
20Tbps
Netwok

with
35 PoPs

> 1.3M Customers in 138 Countries

Hosting capacity :
1.3M Physical

Servers

360k
Servers already

deployed

30 Datacenters 1 Dedicated IaaS
Europe

200k Private cloud
VMs running

OVHcloud: Our solutions

Cloud
Web
Hosting

▪ Dedicated Server

▪ Data Storage

▪ Network and

Security

▪ Licences

Mobile
Hosting Telecom

 VoIP

SMS/Fax

Virtual desktop

Cloud Storage

Over the Box

 Containers

 Compute

 Database

 Object Storage

Securities

 Messaging

VPS

Public Cloud

Private Cloud

Serveur dédié

Cloud Desktop

Hybrid Cloud

Domain names

 Email

 CDN

Web hosting

MS Office

 MS solutions

How is the codelab structured?
What are we coding today?

A GitHub repository

https://github.com/LostInBrittany/wasm-codelab

Nothing to install

Using WebAssembly Explorer
and WebAssembly Studio

Only additional tool: a web server

Because of the browser security model

Procedure: follow the steps

Step by step

But before coding, let's speak

What's this WebAssembly thing?

Did we say WebAssembly?
WASM for the friends...

WebAssembly, what's that?

Let's try to answer those (and other) questions...

A low-level binary format for the web

Not a programming language
A compilation target

That runs on a stack-based virtual machine

A portable binary format that runs
on all modern browsers… but also on NodeJS!

With several key advantages

But above all...

WebAssembly is not meant to replace JavaScript

Who is using WebAssembly today?

And many more others...

A bit of history
Remembering the past

to better understand the present

Executing other languages in the browser

A long story, with many failures...

2012 - From C to JS: enter emscripten

Passing by LLVM pivot

Wait, dude! What's LLVM?

A set of compiler and toolchain technologies

2013 - Generated JS is slow…

Let's use only a strict subset of JS: asm.js
Only features adapted to AOT optimization

WebAssembly project

Joint effort

Hello W(asm)orld
My first WebAssembly program

I don't want to install a compiler now...

Let's use Wasm Explorer
https://mbebenita.github.io/WasmExplorer/

https://mbebenita.github.io/WasmExplorer/

Let's begin with the a simple function

WAT: WebAssembly Text Format
Human readable version of the .wasm binary

Download the binary .wasm file

Now we need to call it from JS...

Instantiating the Wasm

1. Get the .wasm binary file into an array buffer
2. Compile the bytes into a WebAssembly module
3. Instantiate the WebAssembly module

Instantiating the WASM

Loading the squarer function

We instantiate the Wasm by loading the wrapping JS

Using it!

Directly from the browser console
(it's a simple demo…)

You sold us a codelab!
Stop speaking and let us code

You can do steps 01 and 02 now

Let's code, mates!

Some use cases
What can I do with it?

Tapping into other languages ecosystems

Don't rewrite libs anymore

Replacing problematic JS bits

Predictable performance
Same peak performance, but less variation

Features of Wasm
Why is everybody looking at it?

Near native speed

https://medium.com/wasmer/benchmarking-webassembly-runtimes-18497ce0d76e

https://medium.com/wasmer/benchmarking-webassembly-runtimes-18497ce0d76e

Highly portable

It can be run almost everywhere...

Readable and debuggable

Each .wasm file with it .wat companion file

Memory safe & secure

Running in a fully sandboxed environment

Accepting many source languages

And more and more...

Some constraints
Still a young platform

Native WASM types are limited
WASM currently has four available types:

● i32: 32-bit integer
● i64: 64-bit integer
● f32: 32-bit float
● f64: 64-bit float

Types from languages compiled to WASM are mapped to these

How can we share data?

Using the same data in WASM and JS?
Shared linear memory between them,

and serializing the data to one Wasm types

Solution is coming: Interface types

Beautiful description at:
https://hacks.mozilla.org/2019/08/webassembly-interface-types

https://hacks.mozilla.org/2019/08/webassembly-interface-types

No outside access

By design, communication is done
using the shared linear memory only

Solution exists: WASI

Mono-thread and scalar operations only

Not the most efficient way...

Solution exists: SIMD

Solutions are coming too: Wasm Threads

Threads on Web Workers with shared linear memory

Incoming proposals: Garbage collector

And exception handling

You can do steps 03 and 04 now

Let's code, mates!

AssemblyScript
Writing WASM without learning a new language

TypeScript subset compiled to WASM

Why would I want to compile
TypeScript to WASM?

Ahead of Time compiled TypeScript

More predictable performance

Avoiding the dynamicness of JavaScript

More specific integer and floating point types

Objects cannot flow in and out of WASM yet

Using a loader to write/read them to/from memory

No direct access to DOM

Glue code using exports/imports to/from JavaScript

You can do step 05 now

Let's code, mates!

WebAssembly ❤ Web Components
How to hide the complexity and remove friction

The 3 minutes context

What the heck are web component?

Web Components

Web standard W3C

Web Components

Available in all modern browsers:
Firefox, Safari, Chrome

Web Components

Create your own HTML tags
Encapsulating look and behavior

Web Components

Fully interoperable
With other web components, with any framework

SHADOW DOM TEMPLATESCUSTOM ELEMENTS

Web Components

 To define your own HTML tag

Custom Element

<body>

 ...

 <script>

window.customElements.define('my-element',

class extends HTMLElement {...});

 </script>

 <my-element></my-element>

</body>

To encapsulate subtree and
style in an element

Shadow DOM

<button>Hello, world!</button>

<script>

var host = document.querySelector('button');

const shadowRoot = host.attachShadow({mode:'open'});

shadowRoot.textContent = 'こんにちは、影の世界!';

</script>

To have clonable document template

Template

<template id="mytemplate">

 <div class="comment"></div>

</template>

var t = document.querySelector('#mytemplate');

// Populate the src at runtime.

t.content.querySelector('img').src = 'logo.png';

var clone = document.importNode(t.content, true);

document.body.appendChild(clone);

But in fact, it’s just an element…

● Attributes

● Properties

● Methods

● Events

You can do step 06 and 07 now

Let's code, mates!

