
The Wonders and Woes of
Webhooks

Webinar

16 / 02 / 2023

Hi 👋,

I’m Marcus Noble, a platform engineer
at

I’m found around the web as
✨AverageMarcus✨ in most places
and @Marcus@k8s.social on Mastodon

~5 years experience running Kubernetes
in production environments.

My Relationship with Webhooks
- a story in 3 acts

Act #1

Introduction, backstory and the ✨wonders✨
Act #2

The conflicts, struggles and woes 😨
Act #3

The resolution and the future 🔮

Act #1

Webhooks in Kubernetes

Kubernetes has three main types of webhooks:

● ValidatingWebhookConfiguration - Introduced in v1.9 (replacing GenericAdmissionWebhook

introduced in v1.7)

● MutatingWebhookConfiguration - Introduced in v1.9

● CustomResourceConversion - Introduced in v1.13

We’re going to focus on the first two and ignore the CustomResourceConversion for the

purpose of this talk.

Beta

Beta

Dynamic Admission Control

● Both Validating and Mutating admission webhooks come

under the responsibility of the Dynamic Admission controller

within apiserver.

● Can be triggered by (almost) all API operations against

(almost) all Kubernetes resources.

● Part of the admissionregistration.k8s.io/v1 API.

● Currently enabled by default by the default value of the

--enable-admission-plugins apiserver flag. kubernetes.io/docs/reference/access-authn-
authz/extensible-admission-controllers/

CREATE, UPDATE, DELETE & CONNECT

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

Purpose / Use Cases

Defaulting Policy Enforcement

Best Practices Problem Mitigation

Defaulting ● Adding imagePullSecrets when images from private

registries are used

● Generating the image registry secret when new

namespaces are created

● Injecting a sidecar into pods (e.g. Istio)

● Setting default resource limits when not set (alternative to

LimitRange)

● Inject proxy env vars into pods - e.g. HTTP_PROXY,

NO_PROXY

In the past

Policy Enforcement ● Prevent using latest image tag or enforce the use of a

SHA image tag

● Require resource limits to be set on all pods

● Block large container images (e.g. don’t pull container

images >1Gb)

● Prevent use of deprecated Kubernetes APIs (e.g.

batch/v1beta1)

● Block use of hostPath

● Replace old PSP functionality not supported by the new

Pod Security Admission

Best Practices ● Enforce standard labels / annotations on all resources

● Require pod probes be set

● Restrict allowed namespaces

● Require a PodDisruptionBudget to be set

● Replace all pods image registries with an in-house image

proxy / cache.

Problem Mitigation ● Block nodes joining the cluster with known CVEs based

on the kernel version (e.g. CVE-2022-0185)

● Prevent custom nginx snippets from being used

(CVE-2021-25742)

● Inject Log4Shell mitigation env var,

LOG4J_FORMAT_MSG_NO_LOOKUPS, into all pods

(CVE-2021-44228)

● Block binding to the cluster-admin role

● Disallow privilege escalation

Example Webhook

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
 name: "example-webhook.acme.com"
webhooks:
- name: "example-webhook.acme.com"
 rules:
 - apiGroups: [""]
 apiVersions: ["v1"]
 operations: ["CREATE"]
 resources: ["pods"]
 scope: "*"
 failurePolicy: fail
 namespaceSelector:
 matchExpressions:
 - key: "kubernetes.io/metadata.name"
 operator: NotIn
 values: ["kube-system"]

 objectSelector:
 matchLabels:
 app.kubernetes.io/owned-by: my-team
 clientConfig:
 service:
 namespace: default
 name: example-webhook
 path: /validate-pods
 port: 443

Example Webhook

apiVersion: admissionregistration.k8s.io/v1
kind: ValidatingWebhookConfiguration
metadata:
 name: "example-webhook.acme.com"
webhooks:
- name: "example-webhook.acme.com"
 rules:
 - apiGroups: [""]
 apiVersions: ["v1"]
 operations: ["CREATE"]
 resources: ["pods"]
 scope: "*"
 failurePolicy: fail
 namespaceSelector:
 matchExpressions:
 - key: "kubernetes.io/metadata.name"
 operator: NotIn
 values: ["kube-system"]
 objectSelector:
 matchLabels:
 app.kubernetes.io/owned-by: my-team
 clientConfig:
 service:
 namespace: default
 name: example-webhook
 path: /validate-pods
 port: 443

For every resource created /

modified / deleted in the cluster the

Kubernetes apiserver checks for

webhook configurations with a

matching rule.

Example Webhook

 rules:
 - apiGroups: [""]
 apiVersions: ["v1"]
 operations: ["CREATE"]
 resources: ["pods"]
 scope: "*"
 failurePolicy: fail
 namespaceSelector:
 matchExpressions:
 - key: "kubernetes.io/metadata.name"
 operator: NotIn
 values: ["kube-system"]
 objectSelector:
 matchLabels:
 app.kubernetes.io/owned-by: my-team
 clientConfig:
 service:
 namespace: default
 name: example-webhook
 path: /validate-pods
 port: 443

The namespaceSelector and
objectSelector are used to further
filter what a webhook should apply
to.

Example Webhook

 rules:
 - apiGroups: [""]
 apiVersions: ["v1"]
 operations: ["CREATE"]
 resources: ["pods"]
 scope: "*"
 failurePolicy: fail
 namespaceSelector:
 matchExpressions:
 - key: "kubernetes.io/metadata.name"
 operator: NotIn
 values: ["kube-system"]
 objectSelector:
 matchLabels:
 app.kubernetes.io/owned-by: my-team
 clientConfig:
 service:
 namespace: default
 name: example-webhook
 path: /validate-pods
 port: 443

The failurePolicy property indicates
how unexpected errors are handled.
Valid options are `fail` and `ignore`
with `fail` being the default.

Example Webhook

 failurePolicy: fail
 namespaceSelector:
 matchExpressions:
 - key: "kubernetes.io/metadata.name"
 operator: NotIn
 values: ["kube-system"]
 objectSelector:
 matchLabels:
 app.kubernetes.io/owned-by: my-team
 clientConfig:
 service:
 namespace: default
 name: example-webhook
 path: /validate-pods
 port: 443

clientConfig describes what
endpoint the webhook should be
called against.

Example API request

Apply MutatingWebhookConfiguration

Mutating admission
controllers

webhooks

Validating admission
controllers

webhooks

Schema
Validation

create
update
delete

AdmissionReview AdmissionReview

Order not guaranteed Order not guaranteed

Salman Iqbal did a great ignite talk covering this at DevOpsDays London

https://twitter.com/soulmaniqbal
https://youtu.be/HbItUgkdFZw

Wonders in the Wild
Examples of webhooks solving real problems

Leveraging validating webhooks
to restrict the cluster-admin
beyond what was possible by
RBAC to block a bug in our CLI
tool.

Mitigate the Log4Shell vulnerability
cluster-wide by injecting an env var
into all pods that disables the
vulnerable code path, made possible
by a mutating webhook.

Much of Istio’s power in the earlier days came
from its ability to have its own container running
in every pod in the cluster as a “sidecar”, made
possible with a mutating webhook.

https://www.giantswarm.io/blog/restricting-cluster-admin-permissions
https://www.giantswarm.io/blog/restricting-cluster-admin-permissions
https://kyverno.io/policies/other/mitigate_log4shell/mitigate_log4shell/
https://kyverno.io/policies/other/mitigate_log4shell/mitigate_log4shell/
https://istio.io/
https://istio.io/

Alternatives

Initializers

● Introduced in v1.7 providing a way of configuring out-of-tree code that can modify

resources before they actually created.

● Each initializer relies on an operator performing a list/watch to catch resources that need to

be processed.

● The apiserver adds pending initializers to objectMeta but that’s all it handles.

Pod Presets

● Introduced in v1.6.

● Inject defaults into Pods at creation if a matching field isn’t already set.

● Namespace scoped.

Alternatives

Initializers - Removed in v1.16

● Introduced in v1.7 providing a way of configuring out-of-tree code that can modify

resources before they actually created.

● Each initializer relies on an operator performing a list/watch to catch resources that need to

be processed.

● The apiserver adds pending initializers to objectMeta but that’s all it handles.

Pod Presets - Removed in v1.20

● Introduced in v1.6.

● Inject defaults into Pods at creation if a matching field isn’t already set.

● Namespace scoped.

Act #2

The woes

What follows next are incidents where webhooks have caused clusters to break, to varying

degrees of severity, for myself, my team or others.

I mention specific tools for context only and not to call any out for being at fault.

The fault in all of these is the fragility of webhooks within Kubernetes and the lengths that must

be taken to ensure some amount of resilience.

Incident #1 - Kyverno and the faulty AZ

Kyverno is a fantastic tool that makes it very easy to create policies to be applied to almost everything in a

cluster. It does this by creating wide-catching Validating/Mutating webhooks.

Many of the policies are security-related (replacing old PSP functionality) and as such has a failurePolicy

of Fail.

For resilience, the service behind the webhooks runs with at least 2 replicas and has some logic to de-register

the webhook when the last replica is removed from the cluster. Pod anti-affinity is in place to ensure the

replicas are scheduled onto different nodes.

https://kyverno.io/

Incident #1 - Kyverno and the faulty AZ

1. By chance, both pods were scheduled onto nodes within the same Failure Domain.

2. Something happened that caused that failure domain to fail. This could be an issue with the cloud provider, a

manual error accidentally deleting an ASG or maybe some routing changes that left that subnet inaccessible.

3. Both Kyverno pods are suddenly missing from the cluster. The scheduler does its job and goes to schedule

two new pods.

4. The apiserver receives the API call to create the new pods, checks the list of MutatingWebhookConfigurations

and sees the entry for the Kyverno webhook.

5. A webhook request is made to the Kyverno service in the cluster but as no pods are running it returns an error

and blocks the new pod creation.

Impact = Cluster at-risk. Autoscaling up not working. Recreating broken pods not possible.

Incident #2 - Cluster upgrade

Our cluster has several Mutating and Validating webhooks in place, many of them targeting

Pods.

Some of the services behind the webhooks includes, but is not limited to, cert-manager, Instana,

Kyverno and Linkerd.

Most were installed using 3rd party Helm charts with their default values.

Incident #2 - Cluster upgrade

1. An upgrade of the cluster to the latest Kubernetes version is triggered. The cluster has plenty of spare capacity

so a strategy of removing 25% of nodes at a time is used.

2. The upgrade is performed by making changes to the AWS Launch Template used by the nodes and then an

Instance Refresh is performed on the ASG.

3. The initial 25% of nodes includes 1 control plane and 2 worker nodes.

4. When the 3 new nodes are launched, they are unable to schedule any pods (including any for the control

plane). Logs for controller-manager taken from the host node include several instances of Internal error

occurred: failed calling webhook.

5. The instances in AWS were reporting as running so the Instance Refresh continues cycling the rest of the

cluster.

Impact = Cluster completely taken down if not caught early enough! 😱

Incident #3 - Jetstack - OPA takes down GKE cluster

The following incident comes from Jetstack (source: https://blog.jetstack.io/blog/gke-webhook-outage/) and I have picked

out the highlights to include here:

We were in the process of upgrading the control plane for a development cluster used by many teams to
test their apps during the working day.

We began the upgrade via our GKE Terraform pipeline. When performing the control plane upgrade the
operation did not complete before the Terraform timeout (which we had set to 20 minutes). This was the
first sign that something was wrong though the cluster was still showing as upgrading in the GKE
console.

https://blog.jetstack.io/blog/gke-webhook-outage/

Incident #3 - Jetstack - OPA takes down GKE cluster

1. GKE completed the upgrade of one control plane instance, and started to receive all API server traffic as the
following control plane instance were upgraded.

2. During the upgrade of the second control plane instance, the API server was unable to run PostStartHook for
ca-registration.

3. While running this hook, the API server attempted to update a ConfigMap in kube-system. This operation
timed out as the backend for the validating webhook, Open Policy Agent (OPA), was not responding.

4. This operation must complete for a control plane node to pass a health check, because it continuously failed the
second control plane entered a crash loop and halted the upgrade.

5. Kubelet unable to report node health.
6. GKE node auto-repair continually recreated the nodes.

Impact = Intermittent API downtime.

https://github.com/kubernetes/kubernetes/blob/e09f5c40b55c91f681a46ee17f9bc447eeacee57/pkg/master/client_ca_hook.go#L43
https://github.com/kubernetes/kubernetes/blob/e09f5c40b55c91f681a46ee17f9bc447eeacee57/pkg/master/client_ca_hook.go#L121
https://github.com/kubernetes/kubernetes/blob/e09f5c40b55c91f681a46ee17f9bc447eeacee57/pkg/master/client_ca_hook.go#L121

Incident #3 - Scale-to-zero

A non-production cluster uses cluster-autoscaler to scale down worker nodes to 0 outside of

working hours to save on costs.

The control plane nodes remain (either as a single node or a HA cluster of 3).

Cluster-autoscaler is set to evict DaemonSets and a daily CronJob is run to scale down all

Deployments to 0 replicas (and back up again in the morning).

The CronJob has a toleration for control plane nodes to ensure it can run again in the morning

with no workers.

Incident #3 - Scale-to-zero

1. For weeks the cluster scaling operated as expected, scaling to 0 and back up based on the

CronJob.

2. A team member deploys a new application that includes a

ValidatingWebhookConfiguration with a failurePolicy set to Fail.

3. The next time to CronJob runs, the cluster scales down all worker nodes, terminating all

pods of the newly installed application.

4. The following morning no worker nodes are created and all deployments are still set to 0

replicas.

Impact = No worker nodes and no deployments running.

Act #3

Lessons Learned ● All webhook services should have at least 2

replicas, a PodDisruptionBudget, anti-affinity

ensuring the pods end up in different failure domains

and health probes in place.

● Where possible, ensure that namespaceSelector is

set to ignore kube-system.

● Where possible, make use of objectSelector to

only target what is required.

● Be careful when cycling nodes and not relying on

the cloud providers health checks alone.

● Avoid cluster-autoscaler scale-to-0 when using

webhooks without a failurePolicy set to ignore.

Regardless of the
“importance” of
the functionality
the app provides

So what can we,
as cluster operators,

do to avoid this?

33

Unfortunately not a whole lot. 😞

34

So what can we,
as cluster operators,

do to avoid this?

A webhook to enforce
resilient webhooks

A webhook to enforce
resilient webhooks

NOPE!

It’s not possible to have webhooks with rules

targeting webhooks. They’re the only resources

explicitly excluded in the code.

func IsWebhookConfigurationResource (attr admission.Attributes) bool
{
 gvk := attr.GetKind()
 if gvk.Group == "admissionregistration.k8s.io" {
 if gvk.Kind == "ValidatingWebhookConfiguration" || gvk.Kind ==
"MutatingWebhookConfiguration" {
 return true
 }
 }
 return false
}

Enforce best practices While we can’t have a webhook watching other

webhooks, we can trigger based on the creation

of Services and Deployments and then check

for associated webhooks pointing at them.

BUT… this is only works if the webhook has

already been created in the cluster. Not much

use to us on first install as the deployments and

services need to exist first.

Instead, we must enforce best practices (min

replicas, PDB, anti-affinity, etc.) on all

deployments to ensure we catch all webhook

services.
We all follow best practices all the time anyway, right?

Watchdog Rather than preventing the potential issues from

being created, we can instead monitor for their

existence.

An operator running in our cluster watching all

webhooks, reporting metrics and alerting on

ones that don’t meet our minimum requirements.

Yikes! I’m glad this is a test cluster.

Out of cluster services It’s possible to point a webhook configuration at

an external endpoint (URL) instead of a

Kubernetes Service resource.

This avoids the issues of the webhook blocking

its own creation as it’s no longer managed as a

Pod.

Needs some other system to ensure the

application remains running, stays accessible

from the cluster and responds quickly.

The (possible) future

KEP-1872 - Manifest based registration of Admission webhooks
● No gap in enforcement between when apiserver is started and webhook configuration is created

● Prevent deletion of these webhook configurations similar to how static pods are handled

Introduced: 2020-04-21 | Status: Dropped

KEP-2876 - CRD Validation Expression Language
● Implement expression language support (CEL) into current validation mechanism, avoiding some

cases where webhooks would be needed

● Make CRD validation more self-contained

Introduced: 2021-05-26 | Status: Alpha in v1.23, Beta in v1.25

Ok, I said we wouldn’t talk about CRD webhooks but this is worth a mention

There was a good blog post about this recently

https://github.com/kubernetes/enhancements/tree/master/keps/sig-api-machinery/1872-manifest-based-admission-webhooks
https://github.com/kubernetes/enhancements/tree/master/keps/sig-api-machinery/2876-crd-validation-expression-language
https://github.com/google/cel-go
https://kubernetes.io/blog/2022/09/23/crd-validation-rules-beta/

The (possible) future

Proposed idea:

A new apiserver admission plugin that makes

use of WebAssembly modules to run admission

requests against, instead of calling a webhook.

Benefits:
● Less uncertainty from not relying on network

● Less resource usage - no need for multiple

controllers, all handled by the apiserver

https://www.youtube.com/watch?v=4CKcMZySUbc

Wrap-up The wonders:
● Defaulting

● Policy enforcement

● Best practices

● Issue mitigation

The woes:
● Webhook services need to be resilient

● Cluster can be taken down if not careful

● Very little can be done at a cluster level to ensure foolproof

webhooks are used

The future:
● Less reliance on webhooks for things like schema validation

● Admission plugins offering alternative methods to webhooks -

e.g. WebAssembly

Wrap-up Slides and resources available at:

https://go-get.link/wonders-and-woes-webinar

Thoughts, comments and feedback:

 feedback@marcusnoble.co.uk

 https://k8s.social/@Marcus

Thank you

https://go-get.link/wonders-and-woes-webinar
mailto:feedback@marcusnoble.co.uk
https://k8s.social/@Marcus

