
#weirdbrowsers

Weird Browsers

Niels Leenheer 
@html5test





383 
Safari 10

499 
Chrome 53

463 
Firefox 49

5550

desktop browsers results on html5test.com

460 
Edge 14

http://html5test.com


383 
Safari 10

5550

desktop browsers results on html5test.com

463 
Firefox 49

460 
Edge 14

499 
Chrome 53

http://html5test.com


desktop browsers results on html5test.com

2006 2008 2010 2012 2014 2016

19 33

113

265
312

360

433
460

Edge
Internet Explorer

http://html5test.com


new since internet explorer 6



JSON encoding and decoding

Canvas 2D graphics

Video

Audio

Geolocation

SVG graphics

Semantic elements

Video subtitles App-cache offline support

File API’s

Form validation

HTML5 parser
Color input type

Drag and drop

IndexedDB

Page Visibility
URL API

Device OrientationFull Screen

Pointer events

Web Crypto

Media source extensions

Mutation Observer

Typed Arrays

InternationalisationES6: Promises

Responsive images

Adaptive streaming

Pointerlock

ObjectRTC

Blend modes

WebAuthentication

Fetch

Beacons

Speech synthesis

Streams

CSS border image



Content security policy

PNG transparency support

CSS opacity

CSS transitions

CSS transforms

CSS animations
Native XMLHTTP

DOM3 events

VP9 video codec

WOFF fonts

CSS Selectors

CSS Grid Layout

ARIA

XPath

CSS 3D transforms

Selection API
ES6: WeakMap Touch events

CSS Gradients

CSS calc

CSS Snap Points

High Resolution Timing

Sandboxed iframes

Navigation Timing

Screen orientation

WebDriver

TLS 1.2

SVG External content

Regions

Image sourceset
HSTSData URLs



Local storageSession storage
Web WorkersGamepad

Notifications

Session history
Web Sockets WebGL

WebAudio

Async script execution

Cross-origin Resource Sharing

Access the webcam

ECMAScript 5
CSS Multicolumn

Cross-document messaging
Device Motion

HTTP/2

WebRTC

ASM.js CSS Filters

Exclusions

CSS Flexbox

Canvas 2D Path ES6 Classes

Console logging

CSS unset
Date input types

Encrypted Media Extensions

HTTP/2 server push
IME API

Media Queries Level 4

Message Channels

ES6: Template strings
ES6: Subclassing

ES6: Arrow functions

ES6: Generators





weird browsers



no, this talk is not about internet explorer 6



the web is weird by definition



the web is not a single platform





?weird browsers?



?weird browsers?



game consoles 



portable 
game consoles 



smart tvs



e-readers



smartwatches



photo cameras



fridges



cars



vr headsets





smart tvs and  
game consoles



“big screen browsers”





television browsers are pretty good 

the last generation of television sets use  
operating systems that originate on mobile



427 
LG WebOS

218 
Google TV

199 
LG Netcast

490 
Samsung Tizen

478 
Opera Devices

261 
Panasonic 

Viera

smart tv results on html5test.com

5550

371 
Panasonic 
Firefox OS

352 
Samsung 
2014

http://html5test.com


289 
Playstation 4

57 
Playstation 3

258 
Playstation TV

108 
Xbox 360

256 
Wii U

65 
Wii

5550

console results on html5test.com

428 
Xbox One with Edge

http://html5test.com


controlling the browser

1



the biggest challenge of  
of big screen browsers



navigation 
(without mouse or touchscreen)



d-pad



d-pad



alternatives



analog controllers



remotes  
with trackpad



remotes  
with airmouse



second screen



many manufacturers also create apps for  
controlling the smart tv, console or set-top box





text input 
(without keyboard)



d-pads



text input with the d-pad



alternatives



remotes 
with keyboards



wireless keyboards



and apps





gesture control 
(throw your hands up in the air,  

and wave ’em like you just don’t care)



navigation with gesture control



can we control these input methods  
directly from javascript?



the d-pad 

maybe



1 keyboard events 

window.addEventListener("keypress", function(e) {  
   e.preventDefault(); // no navigation 
   ... 

});



the gamepad 

maybe



the gamepad api 

var gamepads = navigator.getGamepads(); 
for (var i = 0; i < gamepads.length; i++) { 
  ... 
}

1



the webcam 

maybe



the getusermedia api 

navigator.getUserMedia( 
   { audio: true, video: { width: 1280, height: 720 } },  
   function(stream) { ... }, 
   function(error) { ... } 
);

1



the difference between  
a television and a monitor

2



overscan 
(let’s make it a bit more complicated)



due to historical reasons televisions will  
not show the borders of the image



the television enlarges all images  
from the hdmi input by 5%

1920 pixels



the television enlarges all images  
from the hdmi input by 5%

1920 pixels



the image is then cropped to  
1920 by 1080 pixels



the image is then cropped to  
1920 by 1080 pixels



overscan causes blurry output

+5%



solution 1 

overscan correction



the browser does not use 
 the edges of the image

1920 pixels



the television will enlarge  
the image by 5%

1920 pixels



and the content is now fully visible, the unused 
border is cropped out of the final image



but not every television set enlarges the  
image by exactly 5%, this can vary between 

manufacturers and models



configure the correct overscan correction  
in the system preferences



the playstation 4 will always show the browser 
without overscan correction in full screen mode



the playstation 4 will always show the browser 
without overscan correction in full screen mode



solution 2 

no overscan



it is possible to disable overscan  
on many television sets 

‘screen fit’, ‘pixel perfect’ or ‘just scan’



the playstation 3 always shows the  
browser with overscan correction



the viewport 
(i really need some aspirin!)



the visual viewport 
determines which 
part of the website 
will be visible 

measured in  
device pixels

the visual viewport



the visual viewport 
determines which 
part of the website 
will be visible 

measured in  
device pixels

the visual viewport



the visual viewport

the visual viewport 
determines which 
part of the website 
will be visible 

measured in  
device pixels



the layout viewport

the layout viewport 
determines the width 
in css pixels on which 
the site will be 
rendered



the layout viewport

the layout viewport 
determines the width 
in css pixels on which 
the site will be 
rendered



the layout viewport

the layout viewport 
determines the width 
in css pixels on which 
the site will be 
rendered



the default layout viewport is different on  
every smart tv, console or set-top box 

between 800 and 1920 css pixels 



nintendo wii

800 pixels



nintendo wii u

980 pixels



lg webos

960 pixels



microsoft xbox 360

1041 of 1050 pixels



microsoft xbox one

1200 of 1236 pixels



microsoft xbox one (with edge)

1200 of 1236 pixels



sony playstation 3

1824 pixels



sony playstation 4

1920 pixels



Nintendo Wii 800
LG WebOS 960
Nintendo Wii U 980
Philips 2014 series 980
Google TV 1024
Playstation TV 1024
Samsung Tizen 1024
Xbox 360 1051
Xbox One 1200
LG Netcast 1226
Panasonic Viera 1256
Opera Devices 1280
Samsung 2014 series 1280
Panasonic Firefox OS 1536
Playstation 3 1824
Playstation 4 1920



device pixels != device pixels 
(of course not)



sometimes devices pixels are not  
physical devices pixels, but virtual device pixels 

the browser renders in a lower resolution  
which is upscaled to the resolution of the display



distance to the screen

3



20 inch



20 inch



10 foot



“Make fonts and graphics on the site larger to 
account for viewing distance. People sit  

proportionally farther from a TV than from a 
computer monitor of the same size.” 

 
– Internet Explorer for Xbox One Developer Guide

https://msdn.microsoft.com/en-us/library/dn532261(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/dn532261(v=vs.85).aspx


Make your text  
and images two to  
three times bigger



Make your text  
and images two to  
three times bigger



Make your text  
and images two to  
three times bigger



youtube on the big screen



youtube on the big screen



identifying smart tv’s 
(css for televisions)



css media types 

@media tv { 
   body { 
      font-size: 300%; 

   } 

} ×1



css media types 

all television browsers use the  
css media type ‘screen’

1



screen size 

if (screen.width == 1920 && screen.height == 1080) {  
   document.body.className += " television"; 
} ×2



screen size 

monitors and phones often use  
hd resolutions, television browsers  
often use other resolutions

2



useragent sniffing 

if (navigator.userAgent.search(/TV/i) >= 0) { 
   document.body.className += " television"; 
} ×3



useragent sniffing 

not all smart tv’s are recognisable 
Mozilla/5.0 (X11; Linux; ko-KR)  
AppleWebKit/534.26+ (KHTML, like Gecko)  
Version/5.0 Safari/534.26+

3



couch mode 

the only reliable way to optimise a website  
for television is to make two different websites… 

or give the user the ability to switch on  
couch mode

4



be careful with 
feature detection

4



“Basically every feature that talks to the  
operating system or hardware, is suspect.” 

 
– Me, just now

http://blog.html5test.com/2015/08/the-problems-with-feature-detection/

http://blog.html5test.com/2015/08/the-problems-with-feature-detection/


if (!!navigator.geolocation) { 

  navigator.geolocation.getCurrentPosition( 
    success, failure 
  ); 

} 
else { 
  // alternative 
}



failure is called with a “permission denied” error code1

no callback at all to success or failure2

if (!!navigator.geolocation) { 

  navigator.geolocation.getCurrentPosition( 
    success, failure 
  ); 

}



success is called with longitude = 0 and latitude = 03

success is called with the coordinates of  
Mountain View, USA

4

if (!!navigator.geolocation) { 

  navigator.geolocation.getCurrentPosition( 
    success, failure 
  ); 

}





e-readers



e-reader results on html5test.com

5550

154 
Pocketbook

280 
Kobo

147 
Sony Reader

152 
Kindle Touch

http://html5test.com


infrared touch screen



led’s sensors



mouse events

down/up move touch events 

amazon kindle touch yes

pocketbook basic touch yes

kobo glow yes yes

sony reader yes yes 1 finger



e-ink screens 
(slow, slower, slowest)



microscopic electrostatic charged balls



microscopic electrostatic charged balls

+ –

– +



+ –

– +

microscopic electrostatic charged balls



microscopic electrostatic charged balls





maybe css animations and transitions  
weren’t such a great idea after all



two completely different colors can look  
exactly the same in black and white



two completely different colors can look  
exactly the same in black and white



identifying e-readers 
(css for e-ink screens)



css monochrome mediaquery 

@media (monochrome) { 
  ... 

} ×1



css monochrome mediaquery 

all tested e-readers act like  
they have a color screen

1



useragent sniffing 

there is no universal marker in the 
useragent string, but we can recognise 
individual manufacturers and models

2





vr headsetsvr headsetsvr headsets



oculus rift



htc vive



microsoft hololens



very expensive



but…



google cardboard



google daydream



samsung gear vr





webvr 
(webgl on steroids)



head tracking and camera geometry 

project the 3d scene to two different eyes



Chrome Firefox Samsung Internet Edge

or

experimental build nightly builds soonbehind a flag

or



Chrome Firefox Samsung Internet Edge

or

experimental build nightly builds soonbehind a flag

or



https://iswebvrready.org









?weird browsers!



“We cannot predict future behavior  
from a current experience that sucks” 

 
– Jason Grigsby

http://blog.cloudfour.com/on-the-device-context-continuum/

http://blog.cloudfour.com/on-the-device-context-continuum/


but wait…



browsers!weird



browsers!weird



browsers!
browsers

browsers browsers
browsers!

browsers

browsers

browsers

browsers

browsers
browsers

browsers!
browsers





thank you

niels leenheer 
@html5test


