Enhance your User (and Developer)

Experience with React & Redux

Hil | am Nicolas Goutay. | work at Theodo, a web
consultancy based in Paris & London. | build JS &

Python web applications. | havestagefright am

excited to be here with all of you &

You can find me online (Twitter & GitHub) on
@phacks.

React & Redux

A Lego analogy

React application code would be a Lego instruction

manual, where bricks are DOM nodes. It takes care of
how things look for the end user.

On modern Web apps, how things look are usually a
function of user interactions. In this analogy, the

user is Elya, my 5 year-old niece. Red is her favorite
color, so she wants the car to be red ea.

This is where & Redux kicks in.

& | want the car to be red.”

“OK! | take note that you want your car red...”

& “Dispatch the CHANGE_CAR_COLOR action with the
payload color: red”

“...l sift through all the messy Legos to find red bricks...”

@ “A reducer will process the action, and will add
color: red to the Redux store”

“...and | follow the instructions again with the red bricks”

@ “The store passes the property color: red to
React components”

Redux Store

color: red

Redux — Now with actual code

& “Dispatch the CHANGE_CAR_COLOR action with the
payload color”

export function changeCarColor(color) 3
return 3

type: 'CHANGE CAR COLOR',
color

§
§

Redux — Now with actual code

@ “A reducer will process the action, and will add
color to the Redux store”

function formulaOneApp(state = 3%, action) 3
switch (action.type) 3

case 'CHANGE CAR _COLOR':

return Object.assign(3%, state, 31
color: action.color

£)

default:
return state

Redux — Now with actual code

& “The store passes the properties color and
number to React components”

import React from 'react'

const FormulaOne = (3 color, number }) => (
<div>
<CarBody color=3color} />
<Decorations number=3number}f¢ />
</div>

)

Redux — The Redux Loop

Developer Experience — Easier Debugging

Developer Experience — Easier Debugging

React

Redux

2 items left All | Active Completed

= o] Elements Console

filter...
@@INIT

SET_STATE

O Pause

Inspector

Sources

Commit

5:45:11.90

+00:00.00

Network

Diff

Performance Memory Application Redux »

React TodoMVC

Action | State | Diff | Test

Tree Raw

todos (pin) .

filter (pin):

[{id:1,text:'React',status:'ac..ng:false}]
'all’

Developer Experience — Easier Debugging

This is what the Redux Store of my current project
look like. | can inspect every variable, which are
updated in real time.

User Experience — Built-in Performance

User Experience — Built-in Performance

React components are only repainted when their
props or inner state change.

React
Redux

#WebQDay%O? 8

tems left Al Active ompleted

React APl methods like shouldComponentUpdate
allow us to have a finer-grained control about render
performance.

Developer Experience — “Reasonaboutability™

Developer Experience — “Reasonaboutability”

React developer Jani Evakallio coined the term
“reasonaboutability” (easiness to reason about). |
love it, and it matches perfectly what | feel about
Redux. Here are the Three Principles of Redux:

Developer Experience — “Reasonaboutability”

React developer Jani Evakallio coined the term
“reasonaboutability” (easiness to reason about). |
love it, and it matches perfectly what | feel about
Redux. Here are the Three Principles of Redux:

Single Source of Truth: all the data/Ul state displayed on the
app come from the same JS object. Facilitates debugging.

Developer Experience — “Reasonaboutability”

React developer Jani Evakallio coined the term
“reasonaboutability” (easiness to reason about). |
love it, and it matches perfectly what | feel about
Redux. Here are the Three Principles of Redux:

Single Source of Truth: all the data/Ul state displayed on the
app come from the same JS object. Facilitates debugging.

State is read-only: The only way to change the state is to
emit an action, an object describing what happened.
Provides a single, robust & semantic way to deal with
interactions and to work as a team.

Developer Experience — “Reasonaboutability”

React developer Jani Evakallio coined the term
“reasonaboutability” (easiness to reason about). |
love it, and it matches perfectly what | feel about
Redux. Here are the Three Principles of Redux:

Single Source of Truth: all the data/Ul state displayed on the
app come from the same JS object. Facilitates debugging.

State is read-only: The only way to change the state is to
emit an action, an object describing what happened.
Provides a single, robust & semantic way to deal with
interactions and to work as a team.

Changes are made with pure functions: the Store can only
be updated with pure functions (reducers). Prevents nasty
side effects and facilitates testing.

Redux comes with other benefits — and tradeofis

X Rich ecosystem: Redux has an API to plug-in middlewares.

There are tons of them: for logging, offline capabilities,
async, forms, optimistic Uls...

Tip: & github.com/markerikson/react-redux-links is a

great place to start!

https://github.com/markerikson/react-redux-links

@ Code structure is key: Since all Ul is derived from a single
JS object, it needs to be carefully designed and constantly

adjusted to business requirements.

Tip: Learn from the best! Twitter & Pinterest both use Redux,
and the structure is available for anybody to see with the

React Dev Tools!

& c ® ® & https://mobile.twitter.com/home QY

[W {3 Inspector [Console (O Debugger {} Style Editor (G Performance £k Memory = Network § Storage - Redux React
® Home i .

® 0 Highlight Updates Highlight Search Props

V<t store={dispatch: fn(), subscribe: 1(), getState: s(), ..}>
v<t history={length: 4, action: "REPLACE", location: {.}, ..}>
V<withRouter(t) positionPersistence={set: set(), get: get()} routerProps=
V<t render=render()>
V<t positionPersistence={set: set(), get: get()} routerProps=
v<r>
v <t namespace={page: "app"}>
v<n>
V¥ <Connect(t) scribeNamespace={page: "app"}> == $r
> <t scribeNamespace={page: "app"} language="en" loggedInUserId="58286073
</Connect(t)>
</n>
</t>
</r>
</t>
</t>
</withRouter(t)>
</t>
</t>

g Q 2@ g

¥ Maxime Thoonsen liked
Frangois Z... @francoisz - 9h Vv
TLDR pages: Simplified and
community-driven man pages.
Contains lots of examples for most

commands, and you can add more
on GitHub! tldr.sh

scroller=

O1

T2 Q229 B

Jake Archibald liked

AlexL... @alexjlockwood - 4h Vv
been secretly helping out with this
a bit over the past few weeks.
svgomg now uses svgo v1.0.3,
which can do a bunch of stuff it
couldn't do before (i.e. inlining CSS
styles/classes and a bunch of bug
fixes).

try it out!
jakearchibald.github.io/svg

Jake Archibald @jaffat
Updated

t t withRouter) t t r t n m

L] L

children: {.}
scribeNamespace: {..}

State
storeState: {..}
access: {.}

analytics: {..}
blockedUsers: {.}
devices: {.}
directMessages: {..}
conversations: {..}
entries: {.}
inbox: {.}
updates: {..}
entities: {.}
cards: {.}
genericNotifications: {..}
imageCache: {..}

lists: {.}
tweets: {..}
entities: {.}
902245102436876288: {..}
906701665377681408: {..}
906820622264815616: {..}
907134927615008768: {..}
907264429263273989: {..}
contributors: null

conversation_id: 907134927615008800
conversation_muted: false
coordinates: null
created_at: "2017-09-11T15:27:50.000Z"
display_text_range: Array[2]
entities: {.}
favorite_count: 0
Ifavorited: false
full_text: "@Phacks Nice! Thanks for sharing ®@"
geo: null
id: 907264429263274000
id_str: "907264429263273989"
in reolv to screen name: "Phacks"

viInoD o F@

== e = i R

& Verbosity: to write a feature, you would usually need to

write an action, a reducer, a selector, a saga... It can feel
quite cumbersome compared to Angular 1.

Tip: | just got used to it. After a while it even feels more productive
than Angular 1, because you know exactly what to do to get
everything to work together.

“So, should I use Redux?”

Medium

Dan Abramov

Working on @reactjs. Co-author of Redux and Create React App. Building tools for humans.
Sep 19,2016 - 3 min read

You Might Not Need Redux

The key points

“If you're just learning React, don’t make Redux your
first choice”

For personal side projects, very small teams (1-2

people) or MVPs with very short time to market, drop
Redux & go React

For long-running projects, or larger teams, Redux will
help you work better together and lead to a more
maintainable code base

Conclusion

React with Redux is a mature framework (React just
turned five! &) that empowers developers to

produce performant apps with facilitated debugging
and a standard yet expressive development flow.

Want to dive in?

| wrote a full-featured, test-driven tutorial on writing
a Todo List using React & Redux

& https://github.com/phacks/redux-todomvc

https://github.com/phacks/redux-todomvc

Merci!

Slides are available at phacks.github.io

http://phacks.github.io

