
Enhance your User (and Developer)
Experience with React & Redux

& /phacks

Hi! I am Nicolas Goutay. I work at Theodo, a web
consultancy based in Paris & London. I build JS &
Python web applications. I have stage fright am
excited to be here with all of you ☺

You can find me online (Twitter & GitHub) on
@phacks.

React & Redux

A Lego analogy

test te

fort veau

jean jean

humain loup

travers des

gout bon

bonbon

cher non

How to build a F1

Lego trayLego tray

React application code would be a Lego instruction
manual, where bricks are DOM nodes. It takes care of
how things look for the end user.

On modern Web apps, how things look are usually a
function of user interactions. In this analogy, the
user is Elya, my 5 year-old niece. Red is her favorite
color, so she wants the car to be red 🏎.

This is where 🤖 Redux kicks in.

$ “I want the car to be red.”

🤖 “Dispatch the CHANGE_CAR_COLOR action with the
payload color: red”

% “OK! I take note that you want your car red…”

🤖 “A reducer will process the action, and will add
color: red to the Redux store”

% “…I sift through all the messy Legos to find red bricks…”

🤖 “The store passes the property color: red to
React components”

% “…and I follow the instructions again with the red bricks”

test te

fort veau

jean jean

humain loup

travers des

gout bon

bonbon

cher non

How to build a F1

Redux Store

color: red

Redux — Now with actual code

export function changeCarColor(color) {
 return {
 type: 'CHANGE_CAR_COLOR',
 color
 }
}

🤖 “Dispatch the CHANGE_CAR_COLOR action with the
payload color”

Redux — Now with actual code

function formulaOneApp(state = {}, action) {
 switch (action.type) {
 case 'CHANGE_CAR_COLOR':
 return Object.assign({}, state, {
 color: action.color
 })
 default:
 return state
 }
}

🤖 “A reducer will process the action, and will add
color to the Redux store”

Redux — Now with actual code

🤖 “The store passes the properties color and
number to React components”

import React from 'react'

const FormulaOne = ({ color, number }) => (
 <div>
 <CarBody color={color} />
 <Decorations number={number} />
 </div>
)

Redux — The Redux Loop

Developer Experience — Easier Debugging

Developer Experience — Easier Debugging

Developer Experience — Easier Debugging

This is what the Redux Store of my current project
look like. I can inspect every variable, which are
updated in real time.

User Experience — Built-in Performance

User Experience — Built-in Performance

React components are only repainted when their
props or inner state change.

React API methods like shouldComponentUpdate
allow us to have a finer-grained control about render
performance.

Developer Experience — “Reasonaboutability”

Developer Experience — “Reasonaboutability”

React developer Jani Eväkallio coined the term
“reasonaboutability” (easiness to reason about). I
love it, and it matches perfectly what I feel about
Redux. Here are the Three Principles of Redux:

Developer Experience — “Reasonaboutability”

React developer Jani Eväkallio coined the term
“reasonaboutability” (easiness to reason about). I
love it, and it matches perfectly what I feel about
Redux. Here are the Three Principles of Redux:

Single Source of Truth: all the data/UI state displayed on the
app come from the same JS object. Facilitates debugging.

Developer Experience — “Reasonaboutability”

React developer Jani Eväkallio coined the term
“reasonaboutability” (easiness to reason about). I
love it, and it matches perfectly what I feel about
Redux. Here are the Three Principles of Redux:

Single Source of Truth: all the data/UI state displayed on the
app come from the same JS object. Facilitates debugging.

State is read-only: The only way to change the state is to
emit an action, an object describing what happened.
Provides a single, robust & semantic way to deal with
interactions and to work as a team.

Developer Experience — “Reasonaboutability”

React developer Jani Eväkallio coined the term
“reasonaboutability” (easiness to reason about). I
love it, and it matches perfectly what I feel about
Redux. Here are the Three Principles of Redux:

Single Source of Truth: all the data/UI state displayed on the
app come from the same JS object. Facilitates debugging.

State is read-only: The only way to change the state is to
emit an action, an object describing what happened.
Provides a single, robust & semantic way to deal with
interactions and to work as a team.

Changes are made with pure functions: the Store can only
be updated with pure functions (reducers). Prevents nasty
side effects and facilitates testing.

Redux comes with other benefits — and tradeoffs

🛠 Rich ecosystem: Redux has an API to plug-in middlewares.
There are tons of them: for logging, offline capabilities,
async, forms, optimistic UIs…

Tip: 🔗 github.com/markerikson/react-redux-links is a
great place to start!

https://github.com/markerikson/react-redux-links

🤓 Code structure is key: Since all UI is derived from a single
JS object, it needs to be carefully designed and constantly
adjusted to business requirements.

Tip: Learn from the best! Twitter & Pinterest both use Redux,
and the structure is available for anybody to see with the
React Dev Tools!

Tip: I just got used to it. After a while it even feels more productive
than Angular 1, because you know exactly what to do to get
everything to work together.

😓 Verbosity: to write a feature, you would usually need to
write an action, a reducer, a selector, a saga… It can feel
quite cumbersome compared to Angular 1.

“So, should I use Redux?”

The key points

“If you’re just learning React, don’t make Redux your
first choice”

For personal side projects, very small teams (1-2
people) or MVPs with very short time to market, drop
Redux & go React

For long-running projects, or larger teams, Redux will
help you work better together and lead to a more
maintainable code base

Conclusion

React with Redux is a mature framework (React just
turned five! 🎉) that empowers developers to
produce performant apps with facilitated debugging
and a standard yet expressive development flow.

Want to dive in?

I wrote a full-featured, test-driven tutorial on writing
a Todo List using React & Redux

🔗 https://github.com/phacks/redux-todomvc

https://github.com/phacks/redux-todomvc

Merci!

Slides are available at phacks.github.io

& /phacks

http://phacks.github.io

