
� � � �
Scaling aScaling a

Single Page ApplicationSingle Page Application
with GraphQLwith GraphQL

#whoami#whoami

Charly POLY

Past
➡ JobTeaser alumni
➡ 1 year @ A line

Now

Senior Software Engineer at

The contextThe context

“ Première plateforme collaborative
de conseil, création et développement
pour des projets marketing.

2 products:
ACommunity:

marketplace
The platform:

projects
chat
ACL
timeline
selection lists

The starting pointThe starting point

Redux store for data

one redux action per "CRUD":

Rest CRUD based service: HttpService
updateModel, createModel, deleteModel

{

 models: {
 chats: {
 "8660f534-c425-4688-b4a9-d9ab11c6af85": { /* ... */ }
 }
 }
 // ...
}

The problemThe problem

The chat and the timeline components

Timeline has posts that:
have different types: media,
note, text, links with preview
many types of medias: photos,
videos
theater view (Facebook like)

Chat are contextual:
people chat (1-1, group chats)
post chat

The chat dataThe chat data

The chat dataThe chat data

The chat dataThe chat data

- post with file

- post with text only

- post with image

- post with note attached

- post with video

The chat REST journeyThe chat REST journey

NumbersNumbers

For a average "list chats" query:

➡ 20-50 chats of all types (without paging)

➡ lot of n+1, n+2 requests per chat

➡ lot of redux store updates

➡ lot of react components re-render 💥💥💥

SolutionsSolutions

paging
➡ didn't solved requests issues

"includes" on API side with n+1 objects included in response
➡ do not resolve n+2 queries issue

preload all chats in a dedicated /preload API endpoint
➡ still some perf issue with realtime and updates refetches

The chat REST journeyThe chat REST journey

The first working solutionThe first working solution

Hydra

a custom client side relational cache with transactional
redux dispatch

➡ discover API request based on response data shape
➡ wait all requests to finish before commit to redux
➡ on update, ensure redux cache object relations are up-
to-date

Example: a query on a chat can update a project object in
cache

The chat REST journeyThe chat REST journey

The chat REST journeyThe chat REST journey
HydraHydra

The first working solution The first working solution failfail

Users now have average of 80-100 chats

- client cache to many times invalid (too aggressive) 🔥
- API too slow 🔥

The chat REST journeyThe chat REST journey

GraphQL and Apollo at the rescueGraphQL and Apollo at the rescue

➡ specific chat query with server-side optimisation

➡ no more nesting issue (up to 4 levels easily)

➡ models/data state handled by Apollo using Observables

➡ advanced caching strategies for better UX

The chat in GraphQLThe chat in GraphQL

The chat in GraphQLThe chat in GraphQL

The chat in GraphQLThe chat in GraphQL

Why Apollo and not Relay?Why Apollo and not Relay?

➡ Very flexible and composable API

➡ Support custom GraphQL schema without "Relay edges"

➡ more complete options on caching strategies

➡ easier migration

➡ possibility to have a local GraphQL schema (state-link)

The chat in GraphQLThe chat in GraphQL
Apollo: the smooth migrationApollo: the smooth migration

The chat in GraphQLThe chat in GraphQL
Apollo: the caching strategiesApollo: the caching strategies

"cache-first" (default)

"cache-and-network"

"network-only"

"cache-only"

"no-cache"

The chat in GraphQLThe chat in GraphQL

The Apollo super-powersThe Apollo super-powers

apollo-codegen: TypeScript/Flow/Swift types generation

Link pattern: like rake middleware on front side

Local state: a nice alternative to redux

Going further with GraphQLGoing further with GraphQL
<ApolloForm><ApolloForm>

Going further with GraphQLGoing further with GraphQL

<ApolloForm><ApolloForm>

1. Introspect your API GraphQL Schema

2. Build a JSON-Schema on available types and mutations

3. Create configuration files

4. Automatic form bootstrapping 🎉

Going further with GraphQLGoing further with GraphQL

<ApolloForm> advantages<ApolloForm> advantages

distinct separation between data and UI:

Data structure: what kind of data and validation are exposed

UI structure: how we want to display this data

Your front application is always synced to your API

Easier UI-kit installation and maintainability

ConclusionConclusion

GraphQL is useful for rich front-end application

With Apollo, it can even replace local state management

With TypeScript/Flow or Swift,

it allows to keep clients and APIs synced

