g,

Scaling a
Single Page Application
with GraphQL

#whoami

Charly POLY

Past
=+ JobTeaser alumni
= 1year @Aline

Now

Senior Software Engineer at [€) algolia

The context

e 2 products:
11 Premiere plateforme collaborative = ACommunity:
de conseil, création et developpement

: : o marketplace
pour des projets marketing.

= The platform:
o projects

chat

ACL

timeline

@)
@)
@)
o selection lists

models: {
chats: {
"8660£f534-c425-4688-b4a9-d9abllc6af85": { /*

The problem

The chat and the timeline components

e Timeline has posts that:

= have different types: media,
note, text, links with preview
= many types of medias: photos,

videos
m theater view (Facebook like)

e Chat are contextual:

= people chat (1-1, group chats)
= post chat

The chat data

users

project

chat messages

post_attachments

chat_message metadata

The chat data

- Marketing Dashboari:l Week 18 « Marketing Pe...

.]
P Sl
\

/ -
-~ ~
//hats
@

~
IHHHHiH%HHHHHHI IIIIHHH%IIII
~

~

~

post_attachments

chat_message _metadata

The chat data

- post with text only

- post with file
- post with video

- post with image

- post with note attached

The chat REST journey

Numbers

For a average "list chats" query:

= 20-50 chats of all types (without paging)
=% |lot of n+1, n+2 requests per chat

=% |ot of redux store updates

=+ |ot of react components re-render * %

The chat REST journey

Solutions

paging
= didn't solved requests issues

"includes” on API side with n+1 objects included in response
= do not resolve n+2 queries issue

preload all chats in a dedicated /preload APl endpoint
= still some perf issue with realtime and updates refetches

The chat REST journey

The first working solution

Hydra

a custom client side relational cache with transactional
redux dispatch

= discover APl request based on response data shape
= wait all requests to finish before commit to redux

= on update, ensure redux cache object relations are up-
to-date

Example: a query on a chat can update a project object in
cache

find project in
response ?
NO
chats: [find project in
{ cache ?
id: "572191bf-061f-480c-b858-4257392a965c"
user_id: "f9662982-cf76-4795-ac94-13b2d50a5b3b", | NO
project_id: "44beald44-3c34-44f9-8b7c-bbbff84cb5d9" :
” . fetch project
} " on API
1,
enqueue
project for
caching
find user in YES| enqueue user commit
- . = changes to
response ? for caching
redux cache

The chat REST journey

The first working solution

Users now have average of 80-100 chats

- client cache to many times invalid (too aggressive) &
- APl too slow §

The chat in GraphQL

GraphQL and Apollo at the rescue

=% specific chat query with server-side optimisation
= no more nesting issue (up to 4 levels easily)

= models/data state handled by Apollo using Observables

= advanced caching strategies for better UX

Xy
L L J

guery loadChatsList($offset: Ini!, $limit: Int!, $type: String, $space_id: Siring
chats_count(type: $type, space_id: $space_id)
chats(offset: $offset, Limit: $limit, type: $type) {
id
e query loadChatsList($offser: Int!, $limit: Int!, $type: String, $space_ld:
h in : z
o o chats_count{type: $type, space_id: $space_id)

st essage ¢ chats(offset: $offset, Limit: $limit, type: $type) {
Creatad_at id
space_id
last_chat_message_at
total_chat_messages_count
e is_unread_for_current_user
=Ry last_chat_message {
o id
, ™ message
e created_at
o user {
description Ld
DG first_name
fine last_name
cres picture_path

created_at
updated_at }

picture_path

}
file_resources {
id

}
))
user_tas file_resources {

users {
id
first_name id

Dttty raw_url
cloudinary_url

G metadata {

o type size

preject {
name

d

1)!i1::::nurm { width
height
cloudinary_url t rm

metadata {
size
- }

width
height }
type) .
' link_previews {

¥
post {
d

{ink{:r:v\m { lﬂ
Llink 1' ilnk
, image_url
notes ¢ title
oy description

body
created_at }

description

updated_at
i § notes {
S id
:z:fo\m_ws title
body
created_at
updated_at

space {
id

name

}

}
user_ids

The chat in GraphQL

Why Apollo and not Relay?

= Very flexible and composable API

= Support custom GraphQL schema without "Relay edges"
= more complete options on caching strategies

= easier migration

= possibility to have a local GraphQL schema (state-link)

query getMyData($id: String!) {
chat(id: $id) {
id
post_id @export(as: "post_id")

name
post @rest(type: "Post", path: "/post/post_id") {

id
title
}
users {
name

The chat in GraphQL

Apollo: the caching strategies

® "cache-first" (default)
® "cache-and—-network"

® "network-only"

® "cache-only"

® "no—-cache"

The chat in GraphQL

The Apollo super-powers

e apollo-codegen: TypeScript/Flow/Swift types generation
e Link pattern: like rake middleware on front side

e Local state: a nice alternative to redux

Going further with GraphQL

<ApolloForm>

Todo Form

Going further with GraphQL

<ApolloForm>

1. Introspect your APl GraphQL Schema
2. Build a JSON-Schema on available types and mutations
3. Create configuration files

4. Automatic form bootstrapping -

Going further with GraphQL

<ApolloForm> advantages

e distinct separation between data and Ul:
= Data structure
= Ul structure

e Your front application is always synced to your API

e Easier Ul-kit installation and maintainability

Conclusion

e GraphQL is useful for rich front-end application
e With Apollo, it can even replace local state management

e With TypeScript/Flow or Swift,
it allows to keep clients and APIs synced

