
Application
Delivery to
Kubernetes
A 101 to a fast-evolving ecosystem

Max Körbächer

Co-Founder & Manager Cloud Native Engineer, focusing on:

• Platform Engineering

• Application Delivery

• Cloud Native Advisory

Part of the Kubernetes Release Team & Release Engineering Team

2

Introduction
Max Körbächer

3

CLOUD NATIVE
You are not cloud native just because
you run on an CSP

“The cloud isn’t a place,
it’s a way of doing IT” –
Michael Dell

• Scalable applications
• Running in dynamic environments
• Based containers or functions
• Utilizing declarative APIs
• Structured in (micro) services

Platforms

We build platforms
based on Kubernetes
where application
runs on.

Application Delivery

We implement tools
to support the
development and
delivery of
applications to the
platform.

Automation

Everything is
automated, tested
and proved for
reliability and
zero-downtimes.

Declarative

We utilize APIs and
declarative manifests
to provision
infrastructure,
platform and delivery.

The Foundation

We build a trustful
foundation for
valuable solutions.
This has to be
reliable, secure and
supporting the
requirements of the
applications.

4

WHAT I MEAN
When I talk about cloud native and platforms, I think of

Common patterns & problems with Platforms

● New responsibilities
● 100 options for one problem
● Single vs Multi Clusters
● CICD, GitOps or better

something else
● How to build the application?
● How to ensure security,

compliance and governance?

Platforms abstracts
infrastructure complexities away.

BUT they create new unknown,
custom complexity:

How to deliver
software for K8s

The fairy tale of CI/CD

● Specially custom
build pipelines

● “Hand Made”

● Yet another script

That’s not cloud native!

source: https://blog.container-solutions.com/fluxcd-argocd-jenkins-x-gitops-tools

The fairy tale of CI/CD GitOps

GitOps only gives
the answer to 50%
of the story.

That’s awesome, but
not a 100% solution!

None of it is a
perfect solution

Where to find the right tools?

Where to start to find the right tools?

● Databases

● Hosted K8s

● API Gateways

● Storage

Where to start to find the right tools?

● Databases

● Hosted K8s

● API Gateways

● Storage

Where to start to find the right tools?

● Databases

● Hosted K8s

● API Gateways

● Storage

We want to focus

● Application Definition
& Image Build

● Continuous
Integration & Deliver
(other than the
standard CICD tools)

Let’s focus on what is important
Application Definition & Delivery

Right now we ride a wave of complexity.
The target systems getting highly complex,
a simple executable is not enough to run
and responsibilities getting newly sorted.

“Application Definition & Delivery”, ADD or
short Application Delivery is a part of the
platform engineering which is developer
focused and try to support as good as
possible their mission:

NOT to learn 3x Cloud
Provider, K8s, Helm, min. 5
possible sidecar injections
and fixing your CICD every
2 days

Buildpack API version

api = "0.2"

Buildpack ID and metadata

[buildpack]

id = "samples/kotlin-gradle"

version = "0.0.1"

name = "Sample Kotlin Gradle
Buildpack"

homepage =
"https://github.com/buildpacks/samp
les/tree/main/buildpacks/kotlin-gra
dle"

Stacks that the buildpack will
work with

[[stacks]]

id =
"io.buildpacks.samples.stacks.bioni
c"

[[stacks]]

id =
"io.buildpacks.samples.stacks.alpin
e"

<Main.kt>

package org.kotlinlang.play

fun main() {

println("Hello, World!")

}

<Stack Dockerfile>

FROM ubuntu: bionic as base

ENV CNB_USER_ID=1000

ENV CNB_GROUP_ID=1000

ENV
CNB_STACK_ID="io.buildpacks.samples.sta
cks.bionic"

LABEL
io.buildpacks.stack.id="io.buildpacks.s
amples.stacks.bionic"

RUN groupadd cnb --gid ${CNB_GROUP_ID}
&& \

 useradd --uid ${CNB_USER_ID} --gid
${CNB_GROUP_ID} -m -s /bin/bash cnb

pack build kotlin-sample \

--builder cnbs/builder:bionic \

--buildpack samples/kotlin \

--path samples/apps/kotlin/

BuildPacks

How to integrate BuildPacks in your daily doing?

● Require a custom place to run the build
● Someone has to specify, test and develop the stacks
● Feels like chaining up again tons of tools
● Theoretically can be “replaced” by Dockerfile & build
● Still we have to talk about the deployment configuration

Are CNBs better than the rest?
At least you should have a look at

Tilt

Tiltfile

local_resource(

'deploy',

'python now.py >
start-time.txt',

)

docker_build('example-python-image'
, '.')

k8s_yaml('kubernetes.yaml')

k8s_resource('example-python',
port_forwards=8000,

resource_deps=['deploy'])

Demo

Tilt for teams (?!)

source: https://docs.tilt.dev/controlloop.html

• Still requires docker running locally

• Focuses on K8s

• To interact with your team
effectively, you need to use tilt
cloud

Telepresence

Source: https://www.telepresence.io/docs/latest/reference/architecture/

Remote interception and debugging

Intercepts remote workload and
allows to use your local tools to
debug.

Bypass the deployment cycle to
test fixes.

Only requires the resources of
the services you test, no local
k8s needed!

stages:

 - name: "dev"

 deployment_strategy: "direct"

 test_strategy: "functional"

 - name: "hardening"

 deployment_strategy: "blue_green_service"

 test_strategy: "performance"

 - name: "production"

 deployment_strategy: "blue_green_service"

 remediation_strategy: "automated"

Live Demo System:

https://keptn.public.demo.keptn.sh/

Keptn

● Support you in a
cloud-native application
life-cycle

● Integrates with observability
and alerting to provide SLOs

● All declarative

● Closed-loop remediation

Keptn

A SRE tool for
developer?

● Walks you through the deployment lifecycle

● Integrates:
○ CICD Systems
○ Observability Platforms
○ Testing Tools
○ Notification, further automation etc.

Demo

ArgoCD
GitOps with dev feedback

Progressive Delivery and fine-grained
deployments of you apps

Argo Rollout
An event platform to trigger cloud native
resources

Argo Events

Why ArgoCD is great?
It keeps evolving!

Workflow engine to parallelize and orchestrate
jobs on Kubernetes

Argo Workflow
Same app, multiple clusters, for unprivileged
users

Argo Application Sets

Why ArgoCD is great? - Part 2
It keeps evolving!

• Application first - define the app with a
self-contained model, where operational
behaviors as part of app definition

• Clarity and extensibility - an open
standard to modularize infrastructure
capabilities

• Runtime agnostic - a consistent
experience to deploy and operate your
apps across on-prem clusters, cloud
providers or even edge devices

Open Application Model

source: https://kubevela.io/docs/concepts/

KubeVela
A reference implementation for OAM

Deployment
Manifests

How the app needs to
run? How the app can
run? What's the
limits? When it is
problematic?
You have to tell!

Not the servers, but
the container images,
CSP integrations and
supporting services.
That’s why you have
platform teams ;)

A 100% clear role for
Dev, Ops and
DevOps will not be
possible.
I believe Platform
Teams can mediate
between the roles.

Summary
Some things we will not get rid of

Infrastructure
“Stacks”

New Roles, new
Responsibilities

Q&A
Let’s connect!

