
HTTP headers for web security
http-response-headers-for-web-security.vercel.app

jackdbd/http-response-headers-for-web-security

https://http-response-headers-for-web-security.vercel.app/
https://http-response-headers-for-web-security.vercel.app/
https://github.com/jackdbd/http-response-headers-for-web-security/
https://github.com/jackdbd/http-response-headers-for-web-security/

Giacomo Debidda

jackdbd

jackdbd

giacomodebidda.com

Freelance full stack developer / web performance consultant

I write TypeScript / Clojure / Zig

I like 🛹 and 🛼

https://github.com/jackdbd
https://twitter.com/jackdbd
https://www.giacomodebidda.com/

Why this talk?
🔒 Important

"Insuf�cient technical and organisational measures to ensure information security" is the 3rd cause of GDPR

�nes (EUR ~390 million as of 2024/04/09)

The Minimum Viable Secure Product (MVSP) checklist mentions the importance of security headers

🗣 Not talked about enough
HTTP Headers - The State of the Web (Chrome for Developers, 2018)

HTTP headers for the responsible developer (Stefan Judis, 2019)

🌐 Browsers introduced new security features
SameSite cookies, new Content-Security-Policy directives, Reporting API v1, Permissions-Policy

New headers to provide additional control over the same-origin policy: CORP, COEP, COOP

https://www.enforcementtracker.com/?insights
https://www.enforcementtracker.com/?insights
https://www.enforcementtracker.com/?insights
https://mvsp.dev/
https://mvsp.dev/
https://youtu.be/riPSW5P127M?si=dGxJCHTaeEQasopq
https://youtu.be/riPSW5P127M?si=dGxJCHTaeEQasopq
https://www.youtube.com/watch?v=JfjiFsJsO4E
https://www.youtube.com/watch?v=JfjiFsJsO4E

(web) security can be

overwhelming.

Where to start?
The 📋 Web Security Cheat Sheet @ infosec.mozilla.org lists a few recommendations.

For each recommendation, the Web Security Cheat Sheet explains:

1. Security bene�t

2. Implementation dif�culty

3. Suggested order for implementation

4. A few notes/suggestions

https://infosec.mozilla.org/guidelines/web_security
https://infosec.mozilla.org/guidelines/web_security

Can you spot the problem?

This web page:

1. is loaded insecurely (there is no redirect to HTTPS)

2. tells us which server was served by

Why No HTTPS?

curl ��head http:��nginx.org

HTTP/1.1 200 OK

Server: nginx/1.25.3

Date: Wed, 03 Apr 2024 19�40�40 GMT

Content-Type: text/html; charset=utf-8

Content-Length: 6985

Last-Modif�ed: Thu, 28 Mar 2024 08�52�04 GMT

Connection: keep�alive

Keep-Alive: timeout=15

ETag: "66052fb4-1b49"

Accept-Ranges: bytes

https://whynohttps.com/

Can you spot the problem?

Assume the web page is served over HTTPS.

Attempts to load a script (active content) over HTTP will be blocked and will generate

mixed content errors.

Attempts to load an image (passive/display content) over HTTP might* be allowed, but

it will still generate mixed content warnings.

*Most browsers prevent mixed active content from loading, and some also block mixed

display content.

<script src="http:��example.com/foo.js">��script>

https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content
https://developer.mozilla.org/en-US/docs/Web/Security/Mixed_content

Should we redirect to HTTPS?

Should we con�gure our web server (e.g. nginx, Caddy) to redirect HTTP to HTTPS?

No, because this leaves us vulnerable to SSL stripping attacks (a type of man-in-the-middle attack).

Insted, we should let the browser redirect to HTTPS for us.

If a website accepts a connection through HTTP and redirects to HTTPS, visitors may initially communicate with the non-encrypted

version of the site before being redirected, if, for example, the visitor types http:�����.foo.com/ or even just foo.com . This

creates an opportunity for a man-in-the-middle attack. The redirect could be exploited to direct visitors to a malicious site instead of

the secure version of the original site.

Source: Strict-Transport-Security

HSTS exists to remove the need for the common, insecure practice of redirecting users from http:�� to https:�� URLs.

Source: The HTTPS-Only Standard

https://en.wikipedia.org/wiki/SSL_stripping
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://https.cio.gov/hsts/
https://https.cio.gov/hsts/

HTTP Strict Transport Security (HSTS)

This con�guration tells the browser to:

1. Connect to the site over HTTPS, even if the scheme chosen was HTTP.

2. Upgrade all requests to HTTPS.

3. Treat TLS and certi�cate-related errors more strictly: users will no longer be able to bypass the error page.

4. Preload the HSTS con�guration automatically*.

5. Do all of the above for two years, on all subdomains.

*You must �rst submit the form on hstspreload.org to ask Chrome to include your domain in the HSTS preload

list. The approval tipically takes two months .

Strict-Transport-Security: max�age=63072000; includeSubDomains; preload

Once HSTS is enabled, it cannot be disabled until the period speci�ed in the header elapses. It is advisable to make sure HTTPS is

working for all content before enabling it for your site. Removing a domain from the HSTS Preload List will take even longer. The

decision to add your website to the Preload List is not one that should be taken lightly.

Source: The Basics of Web Application Security

https://hstspreload.org/
https://www.reddit.com/r/AskNetsec/comments/6mo4lt/how_long_to_get_onto_the_hsts_preload_list/
https://www.reddit.com/r/AskNetsec/comments/6mo4lt/how_long_to_get_onto_the_hsts_preload_list/
https://martinfowler.com/articles/web-security-basics.html
https://martinfowler.com/articles/web-security-basics.html

Con�guring HSTS on Cloud�are

HSTS on Cloud�are SSL/TLS docs

https://developers.cloudflare.com/ssl/edge-certificates/additional-options/http-strict-transport-security/

Browsers (used to) sniff
Browser don’t look at the �le extension of a resource.

Instead, they look at its MIME type (aka media type).

We can explicitly declare the MIME type of a resource:

Browsers don’t always trust us, and try to "sniff" the

MIME type of a resource. This behavior is called

content snif�ng.

Old browsers sniff if Content-Type is not set, or

even if it is set (e.g. text/plain but the content

looks like HTML → old browsers render it as HTML).

Modern browsers sniff if Content-Type is not set.

Attackers can exploit the snif�ng behavior of the

browser: MIME confusion attacks.

Content-Type: text/html; charset=utf-8

Tell browsers to not sniff
It’s easy to tell browsers not to sniff:

This not only prevents content snif�ng, but also makes

the Cross-Origin Read Blocking (CORB)* mechanism

stricter in blocking cross-origin requests for JS, CSS,

HTML, JSON, and XML (except SVG).

*See Cross-origin fetches - HTTP 203 for an

explanation on how CORB mitigates Spectre and

Meltdown.

X-Content-Type-Options: nosniff

https://www.iana.org/assignments/media-types/media-types.xhtml
https://chromium.googlesource.com/chromium/src/+/main/services/network/cross_origin_read_blocking_explainer.md
https://youtu.be/vfAHa5GBLio?si=sQ7PZFmASEtrHl9f&t=1102
https://youtu.be/vfAHa5GBLio?si=sQ7PZFmASEtrHl9f&t=1102

Hijacking user's clicks

 <div style="position: absolute; left: 25%; top: 35%;">

 ���� never gets clicked since the iframe covers the entire page ���

 <button type="button" style="border�color: red; border�width: 2px; color: red;">

 DECOY BUTTON

 ��button>

 ��div>

 ���� this iframe captures all clicks, since it covers the entire page ���

 <iframe style="opacity: 0;" width="680" height="480" scrolling="no"

 src="https:��vulnerable�bank.com/transfer.html">

 ��iframe>

��body>

��html>

<!DOCTYPE html>

<html lang="en-US">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device�width, initial�scale=1.0">

 <title>Decoy web page��title>

��head>

<body>

 <div>

 <h1>You won!��h1>

 <p>Click DECOY BUTTON to get your prize!��p>

 ��div>

X-Frame-Options and
CSP frame-ancestors
The decoy web page "re-dresses" the UI and hijacks

the user’s clicks.

This attack is called clickjacking, aka UI redressing.

Let's say we are the owners of

https:��vulnerable�bank.com/transfer.html .

How do we prevent other websites from embedding

our website’s content into their web pages?

Yesterday

prevents any domain from framing our content

X-Frame-Options: DENY

allows our site to frame its content

X-Frame-Options: SAMEORIGIN

Today

The frame�ancestors CSP directive offers more

�exibility than the X-Frame-Options header:

The above con�guration allows legit�site.org ,

another�legit�site.com , *.legit�site.it to

embed our content in their <iframe> , <embed> , and

<object> .

prevents any domain from framing our content

Content-Security-Policy: frame�ancestors 'none';

allows our site to frame its content

Content-Security-Policy: frame�ancestors 'self';

allows our content to be framed by these domains

Content-Security-Policy: frame�ancestors

 https:��legit�site.org

 https:��another�legit�site.com

 https:��*.legit�site.it

https://portswigger.net/web-security/clickjacking

Cross-Site Request Forgery

 <form action="https:��vulnerable�bank.com/transfer.html" id="send�money�to�mario�rossi" method="POST">

 <input type="hidden" name="to" value="Mario Rossi">

 <input type="hidden" name="iban" value="IT81F0300203280886251833317">

 <input type="hidden" name="amount" value="€100">

 ��form>

 document.getElementById('send�money�to�mario�rossi').submit()

<!DOCTYPE html>

<html lang="en-US">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device�width, initial�scale=1.0">

 <title>Mario Rossi's totally legit website��title>

��head>

<body>

 <h1>Welcome to Mario Rossi's totally legit website��h1>

 <p>Lorem Ipsum�����p>

 <script>

 document.addEventListener('DOMContentLoaded', (event) �� {

 })

 ��script>

��body>

��html>

When does it work?
For a CSRF attack to be possible, three key conditions

must be in place:

1. A relevant action directed to the vulnerable website.

For example, a form submission.

2. An automatic way to submit user's credentials. E.g.

session cookies, HTTP Basic authentication,

certi�cate-based authentication.

3. No unpredictable request parameters. The requests

that perform the action do not contain any

parameters whose values the attacker cannot

determine or guess. For example, when causing a

user to change their password, the function is not

vulnerable if an attacker needs to know the value of

the existing password.

How does it work?
If a victim user visits the attacker’s web page, the

following will happen:

1. The attacker’s page will trigger an HTTP request to

the vulnerable website.

2. If the victim is logged in to the vulnerable website,

their browser will automatically include their session

cookie in the request*.

3. The vulnerable website will process the request in

the normal way, as it had been made by the victim

on the vulnerable website.

*Browsers will not send the cookie if it has the

SameSite=Strict or SameSite=Lax attribute.

Anti-forgery tokens
The use of an anti-forgery tokens (aka request

veri�cation tokens) is the recommended, most

widespread solution to mitigate CSRF attacks.

It can be achieved either with state (synchronizer token

pattern) or stateless (encrypted or hashed based token

pattern).

Anti-forgery tokens prevent CSRF because without a

valid token, the attacker cannot create a valid request

to the backend server.

The standard frequency of token generation is per-session, so

make sure your sessions have a reasonable/con�gurable time-

out. It is possible to issue new tokens on a per-request basis.

However, the added protection may be insigni�cant.

Source: Anti CSRF Tokens ASP.NET

Examples

crumb (Hapi)

csrf-protection (Fastify)

ring-anti-forgery (Ring)

Backend generates an anti-forgery token per-session.

Different session → different token.

<input class="csrf�token" type="hidden"

 name="��anti�forgery�token"

 value="gI4w1EuorXBhF/D3tcwk0hZtzepHqu�vjsyPv46G4ngds6HEYTpo

<input class="csrf�token" type="hidden"

 name="��anti�forgery�token"

 value="tPr7VCcPIMixfQQsQf�SSzMLgjr3p6wALIYKRhgq6Dw7c/3BTV3o

https://owasp.org/www-community/Anti_CRSF_Tokens_ASP-NET
https://owasp.org/www-community/Anti_CRSF_Tokens_ASP-NET
https://github.com/hapijs/crumb
https://github.com/hapijs/crumb
https://github.com/fastify/csrf-protection
https://github.com/fastify/csrf-protection
https://github.com/ring-clojure/ring-anti-forgery
https://github.com/ring-clojure/ring-anti-forgery

SameSite cookies
SameSite=Strict and SameSite=Lax are an

excellent defense against CSRF attacks.

Read this article to understand which CSRF attacks are

mitigated by Strict but not by Lax .

SameSite=None does not mitigate CSRF attacks and

must always be used with Secure.

Browser support for SameSite cookies is very good.

Set-Cookie: sid=session-ID-here; path=/; SameSite=Strict

Set-Cookie: sid=session-ID-here; path=/; SameSite=Lax

Set-Cookie: widget_session=abc123; SameSite=None; Secure

This attribute SameSite should not replace a CSRF token.

Instead, it should co-exist with that token to protect the user in

a more robust way.

Source: Cross-Site Request Forgery Prevention Cheat Sheet

Examples

@hapi/cookie

@hapi/yar

@fastify/cookie

The default name for the cookie created by

@hapi/cookie or @fastify/cookie is sid .

The default name for the cookie created by

@hapi/yar is session .

Maybe give you application’s session cookie a more

descriptive name than sid or session . For

example:

sessionid (Instagram)

li_at (LinkedIn)

d (Slack)

_twitter_sess (Twitter)

https://scotthelme.co.uk/csrf-is-dead/
https://cwe.mitre.org/data/definitions/1275.html
https://web.dev/articles/samesite-cookies-explained#samesitenone_must_be_secure
https://caniuse.com/?search=samesite
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#samesite-cookie-attribute
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#samesite-cookie-attribute
https://github.com/hapijs/cookie
https://github.com/hapijs/cookie
https://github.com/hapijs/yar
https://github.com/hapijs/yar
https://github.com/fastify/fastify-cookie
https://github.com/fastify/fastify-cookie

Defense-in-depth

Even if we use anti-forgery tokens and SameSite cookies to mitigate CSRF…

…we still need to mitigate XSS to avoid CSRF attacks.

This approach of layered security is called defense-in-depth. The principle behind it is

the so-called Swiss cheese model.

Cross-Site Scripting (XSS) can defeat all CSRF mitigation techniques!

Source: Cross-Site Request Forgery Prevention Cheat Sheet

Since no single technique will solve XSS, using the right combination of defensive techniques will be

necessary to prevent XSS.

Source: Cross Site Scripting Prevention Cheat Sheet

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

How dangerous is XSS?

XSS attacks can:

bypass CSRF protection;

capture the user’s login credentials;

read any data that the user is able to access;

carry out any action that the user is able to perform;

inject malicious code the web site;

perform a plethora of other attacks.

https://security.stackexchange.com/questions/206520/how-dangerous-is-xss
https://security.stackexchange.com/questions/206520/how-dangerous-is-xss

Likelihood and Impact of XSS vulnerabilities

In risk analysis:

Likelihood

If there is no way to enter untrusted data on the

website (i.e. no input , no textarea , etc), XSS

attacks will be unlikely but not impossible (e.g. a

malicious Chrome extension).

The more input , textarea , etc there are, the easier

will be to forget to perform HTML sanitization on at

least one of them.

If JS is disabled, client-side XSS attacks are not

possible. However, attacks that exploit server-side

vulnerabilities or manipulate HTML and CSS in a way

that doesn't rely on JS execution are still possible.

Impact

In a brochureware website, where all users are

anonymous and all information is public, the impact

will often be low.

In a website holding sensitive data, such as banking

transactions, credit card numbers, or healthcare records,

the impact will usually be high.

The OWASP Risk Rating Methodology page offers guidelines for assessing likelihood and impact, and for

estimating the resulting risk.

Risk = Likelihood× Impact

The actual impact of an XSS attack generally depends on the

nature of the application, its functionality and data, and the

status of the compromised user.

Source: Impact of XSS vulnerabilities

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://portswigger.net/web-security/cross-site-scripting#impact-of-xss-vulnerabilities
https://portswigger.net/web-security/cross-site-scripting#impact-of-xss-vulnerabilities

Is our site vulnerable to XSS?
We can check most kinds of XSS vulnerabilities by injecting a payload that causes the

browser to execute some arbitrary JavaScript. This is called XSS proof of concept .

1. Enter this snippet into an <input> (e.g. search bar, email �eld, etc). If the alert

shows up immediately, the website is vulnerable to re�ected XSS.

2. Enter this snippet into a comment box (e.g. a <textarea>). If this snippet is stored

as it is, the alert will show up every time the page is visited. This means the website is

vulnerable to stored XSS (aka persistent or second-order XSS).

3. Open Chrome DevTools and execute this snippet in the console. If the alert shows

up, the website is vulnerable to DOM-based XSS.

In some cases we need a complex XSS proof of concept to spot a XSS vulnerability.

<script>alert('hi')��script>

<script>alert('hi')��script>

const script = document.createElement("script")

script.innerText = "alert('hi')"

document.head.appendChild(script)

https://portswigger.net/web-security/cross-site-scripting#xss-proof-of-concept
https://portswigger.net/web-security/cross-site-scripting#xss-proof-of-concept

How do we mitigate XSS?

1. Use a modern web framework that has templating, auto-escaping, etc.

2. Leave output encoding / escaping to your framework or use a popular library.

3. Sanitize HTML with a library like DOMPurify .

4. De�ne a strict Content-Security-Policy tailored for your site / web app.

When you use a modern web framework, you need to know how your framework prevents XSS and

where it has gaps. There will be times where you need to do something outside the protection provided

by your framework, which means that Output Encoding and HTML Sanitization can be critical.

Source: Cross Site Scripting Prevention Cheat Sheet (Framework Security)

In the context of XSS defense, CSP works best when it it is:

Used as a defense-in-depth technique.

Customized for each individual application rather than being deployed as a one-size-�ts-all solution.

Source: Cross Site Scripting Prevention Cheat Sheet (Common Anti-patterns)

https://github.com/cure53/DOMPurify
https://github.com/cure53/DOMPurify
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#framework-security
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#framework-security
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#sole-reliance-on-content-security-policy-csp-headers
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#sole-reliance-on-content-security-policy-csp-headers

CSP: how hard can it be?

How it started:

How it’s going (GitHub):

Content-Security-Policy: default�src 'self'; img�src 'self' cdn.example.com;

default�src 'none';

base�uri 'self';

child�src github.com/assets�cdn/worker/ gist.github.com/assets�cdn/worker/;

connect�src 'self' uploads.github.com ���.githubstatus.com collector.github.com raw.githubusercontent.com api.github.com gi

font�src github.githubassets.com;

form�action 'self' github.com gist.github.com copilot�workspace.githubnext.com objects�origin.githubusercontent.com;

frame�ancestors 'none';

frame�src viewscreen.githubusercontent.com notebooks.githubusercontent.com;

img�src 'self' data: github.githubassets.com media.githubusercontent.com camo.githubusercontent.com identicons.github.com a

manifest�src 'self';

media�src github.com user�images.githubusercontent.com/ secured�user�images.githubusercontent.com/ private�user�images.gith

script�src github.githubassets.com;

style�src 'unsafe�inline' github.githubassets.com;

upgrade�insecure�requests;

worker�src github.com/assets�cdn/worker/ gist.github.com/assets�cdn/worker/

CSP: Reddit

There are 30+ CSP directives for a variety of resources,

including fonts, frames, images, audio and video media,

scripts, and workers.

child�src 'self' blob: accounts.google.com;

connect�src 'self' events.redditmedia.com o418887.ingest.sent

default�src 'self';

font�src 'self' data:;

form�action 'none';

frame�ancestors 'self' *.reddit.com *.snooguts.net;

frame�src 'self' ���.reddit.com ���.youtube�nocookie.com play

img�src 'self' data: blob: https:;

manifest�src 'self' ���.redditstatic.com;

media�src 'self' blob: data: *.redd.it ���.redditstatic.com;

object�src 'none';

script�src 'self' 'unsafe�inline' 'unsafe�eval' ���.redditsta

style�src 'self' 'unsafe�inline' ���.redditstatic.com *.reddi

style�src�attr 'unsafe�inline';

worker�src 'self' blob:;

report�to csp;

report�uri https:��w3-reporting�csp.reddit.com/reports

CSP: X / Twitter

Browser support is messy. For example:

older browsers may support style�src , but not

style�src�attr or style�src�elem .

Firefox: no report�to , no trusted�types .

Safari: no manifest�src , no trusted�types .

connect�src 'self' blob: https:��api.x.ai https:��api.x.com h

default�src 'self';

form�action 'self' https:��twitter.com https:��*.twitter.com

font�src 'self' https:��*.twimg.com;

frame�src 'self' https:��twitter.com https:��x.com https:��mo

img�src 'self' blob: data: https:��*.cdn.twitter.com https:��

manifest�src 'self';

media�src 'self' blob: https:��twitter.com https:��x.com http

object�src 'none';

script�src 'self' 'unsafe�inline' https:��*.twimg.com https:��

style�src 'self' 'unsafe�inline' https:��accounts.google.com/

worker�src 'self' blob:;

report�uri https:��twitter.com/i/csp_report?a=O5RXE%3D%3D%3D&

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP#browser_compatibility

Learn CSP the hard way

The default�src CSP directive serves as a fallback for the other CSP fetch directives.

Set it to 'none' and your site will break:

The good news is that you will know exactly why it broke. In DevTools you will see errors like these ones:

Refused to connect to '<URL>' because it violates the following CSP directive:���

Refused to load the script 'foo.js' because it violates���

Refused to apply inline style because it violates���

Refused to load the font 'foo.woff2' because it violates���

Content-Security-Policy: default�src 'none';

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/default-src
https://developer.mozilla.org/en-US/docs/Glossary/Fetch_directive

CSP directives: be speci�c!

Whenever possible*, opt for the most speci�c CSP directive available.

For example, if we want to allow self-hosted <script> elements:

🥉 Good: default�src 'self'

🥈 Better: script�src 'self'

🥇 Best: script�src�elem 'self'

Why this? To mitigate CSP bypasses.

*Remember: browser support for CSP directives is a bit messy.

https://portswigger.net/web-security/cross-site-scripting/content-security-policy/lab-csp-bypass

Maintain your CSP

1. Write the strictest CSP for your site.

2. Test your CSP on Mozilla Observatory (personal

favorite), CSP Evaluator, or Security Headers.

3. Whenever you add new content (e.g. new inline

style), a new asset (e.g. image, font) or connect to a

new domain (e.g. with a <link

rel="prefetch">), check for CSP errors/warnings

in DevTools. Update your CSP accordingly.

4. Whenever you remove content (e.g. you are no

longer hosting images on that CDN but you are now

self-hosting them), review your CSP.

5. Con�gure the report�to and report�uri

directives to send CSP violations to a security

logging service like Report URI.

Useful tips
❌ Do not write your CSP by hand in a _headers �le

(Cloud�are Pages, Netlify) or in a vercel.json �le.

It will soon become really hard to maintain.

❌ Do not rely on a tool that writes a generic CSP for

you. Your CSP must be tailored to your website.

✅ If your CSP is simple, consider a low-key approach,

like generating _headers / vercel.json using a

template engine. See this example with Nunjucks.

✅ If your CSP grows in size, use a tool for writing it.

For example: seespee , netlify-plugin-csp-generator

, @jackdbd/content-security-policy ,

@jackdbd/eleventy-plugin-content-security-policy .

✅ If you can’t afford breaking your site in production,

replace Content-Security-Policy with Content�

Security-Policy-Report-Only .

https://observatory.mozilla.org/
https://csp-evaluator.withgoogle.com/
https://securityheaders.com/
https://report-uri.com/
https://github.com/nhoizey/nicolas-hoizey.photo/blob/main/src/_headers.njk
https://github.com/papandreou/seespee
https://github.com/papandreou/seespee
https://github.com/MarcelloTheArcane/netlify-plugin-csp-generator
https://github.com/MarcelloTheArcane/netlify-plugin-csp-generator
https://github.com/MarcelloTheArcane/netlify-plugin-csp-generator
https://github.com/jackdbd/content-security-policy
https://github.com/jackdbd/content-security-policy
https://github.com/jackdbd/undici/tree/main/packages/eleventy-plugin-content-security-policy
https://github.com/jackdbd/undici/tree/main/packages/eleventy-plugin-content-security-policy

origin

1. scheme, i.e. the protocol (e.g. http , https , ws , wss)

2. host, i.e. the domain (e.g. example.com)

3. port (e.g. 80 , 8080 , 3000)

Example: https://example.com (80 is the default port for HTTP)

URL Same origin?

http://example.com ❌ Different protocol

https://www.example.com ❌ Different host

https://example.com:8080 ❌ Different port

https://example.com/foo ✅ Same origin

origin vs site

Request from Request to Same site? Same origin?

https:��example.com https:��example.com ✅ ✅

https:��app.example.com https:��intranet.example.com ✅ ❌ domain name

https:��example.com https:��example.com:8080 ✅ ❌ port

https:��example.com https:��example.co.uk ❌ eTLD ❌ domain name

https:��example.com https:��example.com ❌ scheme ❌ scheme

Understanding "same-site" and "same-origin"

https://web.dev/articles/same-site-same-origin

Cross-origin requests
Let’s say this page is hosted at https:�����.foo.com . Will the image show up (assuming it exists)?

What about now?

<body>

��body>

<body>

 <div id="container">��div>

 <script>

 document.addEventListener('DOMContentLoaded', async () �� {

 const container = document.getElementById("container")

 try {

 const response = await fetch("https:�����.bar.com/image.jpg") �� cross�origin fetch

 const blob = await response.blob()

 const img = document.createElement("img")

 img.src = URL.createObjectURL(blob)

 container.appendChild(img)

 } catch(err) {

 console.error(err)

 }

 })

 ��script>

��body>

Same-origin policy (SOP)
What is permitted and what is blocked?

Cross-origin embedding
<img src="https:�����.w3schools.com/image

s/w3schools_green.jpg">

<source src="https:��woolyss.com/f/vp9-vor

bis�spring.webm">

Cross-origin reads
 const response = await fetch("<img-URL>", { mode: 'cors' })

1. Failed to fetch

https://web.dev/articles/same-origin-policy#what_is_permitted_and_what_is_blocked

Same-origin policy and CORS
Cross-Origin Resource Sharing (CORS) response headers:

1. Access-Control-Allow-Credentials

2. Access-Control-Allow-Headers

3. Access-Control-Allow-Methods

4. Access-Control-Allow-Origin

5. Access-Control-Expose-Headers

6. Access-Control-Max-Age

7. Access-Control-Request-Headers

8. Access-Control-Request-Method

No Access-Control-Allow-Origin

Image served by ���.w3schools.com

 const response = await fetch("<img-URL>", { mode: 'cors' })

1. Failed to fetch

 const response = await fetch("<img-URL>", { mode: 'no�cors' })

1. image fetched successfully

2. blob.size is 0

Access-Control-Allow-Origin: *

Image served by corsproxy.io

 const response = await fetch("<img-URL>", { mode: 'cors' })

1. Failed to fetch

 const response = await fetch("<img-URL>", { mode: 'no�cors' })

1. image fetched successfully

2. blob.size is 0

CORS: public resources
If a resource hosted on an origin we control does not

contain private data, and we want to share it with the

world, we can tell browsers to relax the same-origin

policy for all origins.

Access-Control-Allow-Origin: *

CORS: sensitive resources
If a resource contains private data, we can either…

…specify a single origin we want to allow:

…generate a Access-Control-Allow-Origin

header dynamically and add a Vary header:

See also:

How to win at CORS

Vary: origin response header and CORS exploitation

Exploiting CORS miscon�gurations for Bitcoins and

bounties

Access-Control-Allow-Origin: https:��your�origin.com

Access-Control-Allow-Origin: <generated�by�our�server>

Vary: Origin

https://jakearchibald.com/2021/cors/#is-it-safe-to-expose-resources-via-cors
https://security.stackexchange.com/questions/151590/vary-origin-response-header-and-cors-exploitation
https://portswigger.net/research/exploiting-cors-misconfigurations-for-bitcoins-and-bounties
https://portswigger.net/research/exploiting-cors-misconfigurations-for-bitcoins-and-bounties

Same-origin policy and CORP, COEP and COOP

Cross-Origin-Resource-Policy (CORP)

Cross-Origin-Embedder-Policy (COEP)

Cross-Origin-Opener-Policy (COOP)

Send CORP with a resource (e.g. an image).

Send COEP and COOP with the top-level document.

You need this con�guration of COEP and COOP to achieve cross-origin isolation.

Cross-Origin-Resource-Policy: same�site

Cross-Origin-Embedder-Policy: require�corp

Cross-Origin-Opener-Policy: same�origin

No CORP
Cross-origin embedding works.

<img src="https:�����.w3schools.com/image

s/w3schools_green.jpg">

CORP� same�site

Cross-origin embedding does not work.

<img src="https:��kitchen�sink�demos.verce

l.app/api/corp?image_url=https:�����.w3scho

ols.com/images/w3schools_green.jpg">

Open Chrome DevTools.

In the Console you should see this error:

❌

net��ERR_BLOCKED_BY_RESPONSE.NotSameSite

In the Network tab, among the Img requests, you

should see this Status :

(blocked:NotSameSite)

COEP� require�corp

The <iframe> below embeds an HTML document

which is served with this header:

COEP: require-corp
Cross-origin embedding (image)

COEP reports will be sent to Report URI

The <iframe> is not the problem. If you visit the

page directly you will not see the video either.

Cross-Origin-Embedder-Policy: require�corp

Explanation
The HTML document that embeds the image and the

video is served with COEP� require�corp .

The image is served with the header Cross�

Origin-Resource-Policy , so it shows up.

The video is not served with the header Cross�

Origin-Resource-Policy , so it does not show

up.

Open Chrome DevTools.

In the Console you should see this error:

❌ net��ERR_BLOCKED_BY_RESPONSE.NotSameOrig

inAfterDefaultedToSameOriginByCoep

In the Network tab, among the Media requests, you

should see this Status :

(blocked:NotSameOriginAfterDefaultedToSameOriginByCoep)

https://kitchen-sink-demos.vercel.app/api/coep
https://kitchen-sink-demos.vercel.app/api/coep
https://kitchen-sink-demos.vercel.app/api/coep

COOP� same�origin
All <a> below have rel="opener"

1. Click this link to open a site A in a new tab.

2. In the new tab, open DevTools, check that

window.opener is not null , then execute this

code.

3. The message sent should appear on the right.

4. Click this link to open a site B in a new tab.

5. The message sent should appear on the right.

6. Click this link to open site C in a new tab.

7. You won’t be able to send any message from site C

since window.opener is null because of this:

window.opener.postMessage(

 { foo: 'bar', num: 123 }, �� message to send

 'https:��http�response�headers�for�web�security.vercel.app'

Cross-Origin-Opener-Policy: same�origin

Messages
same-origin messages will not show up since prop

ignore�same�origin�messages=true

https://www.giacomodebidda.com/
https://kitchen-sink-demos.vercel.app/
https://kitchen-sink-demos.vercel.app/api/coop

Referrer-Policy
The Referer header can contain origin, path, and querystring.

The Referrer-Policy controls how much information should be included in the

Referer header when making same-origin requests and cross-origin requests.

When no policy is set, the browser’s default is used.

This is the default in most browsers:

And this is what it means:

same-origin request: send everything, namely origin, path, and querystring.

cross-origin request:

HTTPS→HTTPS: send just the origin.

HTTPS→HTTP: don’t send the Referer header at all.

Referrer-Policy: strict�origin�when�cross�origin

https://web.dev/articles/referrer-best-practices#default_referrer_policies_in_browsers

Permissions-Policy (prev. Feature-Policy)
Permissions Policy allows the developer to control the browser features available to a page, its iframes, and

subresources, by declaring a set of policies for the browser to enforce.

Example: Instagram

Those ch�* are directives for HTTP client hints.

A server sends the Accept-CH header to specify the client hints that it is interested in receiving.

Permissions-Policy:

 accelerometer=(self), attribution�reporting=(), autoplay=(),bluetooth=(), camera=(self),

 ch�device�memory=(), ch�downlink=(), ch�ect=(), ch�rtt=(), ch�save�data=(), ch�ua�arch=(), ch�ua�bitness=(),

 clipboard�read=(), clipboard�write=(self), display�capture=(),encrypted�media=(), fullscreen=(self),

 gamepad=(), geolocation=(self), gyroscope=(self), hid=(), idle�detection=(), keyboard�map=(), local�fonts=(),

 magnetometer=(), microphone=(self), midi=(), otp�credentials=(), payment=(), picture�in�picture=(self),

 publickey�credentials�get=(), screen�wake�lock=(), serial=(), usb=(), window�management=(), xr�spatial�tracking=();

 report�to="permissions_policy"

Accept-CH�

 viewport�width,dpr,

 Sec-CH-Prefers-Color-Scheme,Sec-CH-UA-Full-Version-List,Sec-CH-UA-Platform-Version,Sec-CH-UA-Model

https://developer.mozilla.org/en-US/docs/Web/HTTP/Client_hints

Reporting API
The browser can generate reports when there are:

security policy violations (con�gured with *-Policy headers)

deprecated API calls (still an unof�cial draft)

browser interventions (e.g. Chromium interventions)

crashes (see this article by Figma)

The browser decides when to send these reports to the endpoint(s) you con�gured.

You can host your reporting server or use a security logging service like Report URI .

Reporting API v0
report�uri directive +

Report-To header +

NEL (Network Error Logging) header

Reporting API v1
report�to directive +

Reporting-Endpoints header

https://wicg.github.io/deprecation-reporting/
https://wicg.github.io/deprecation-reporting/
https://chromestatus.com/features#intervention
https://chromestatus.com/features#intervention
https://neugierig.org/software/blog/2023/01/browser-crashes.html
https://neugierig.org/software/blog/2023/01/browser-crashes.html
https://report-uri.com/
https://report-uri.com/

Reporting-Endpoints example: Instagram
Note the report�to directive in some of the *-Policy headers down below.

This is Instagram’s Reporting-Endpoints header con�guration.

Things to keep in mind:

To receive intervention, deprecation and/or crash reports, de�ne an endpoint named default in the

Reporting-Endpoints header. There is no report�to directive to set.

To receive policy reports, de�ne an endpoint in the Reporting-Endpoints header and reference it in the

report�to directive. Despite its name, default is not a fallback endpoint for these reports.

Content-Security-Policy: <directives�not�shown>;report�uri https:�����.facebook.com/csp/reporting/?m=t&minimize=0;

Cross-Origin-Embedder-Policy-Report-Only: require�corp;report�to="coep_report"

Cross-Origin-Opener-Policy: same�origin�allow�popups;report�to="coop_report"

Document-Policy: force�load�at�top

Permissions-Policy: accelerometer=(self),<directives�not�shown>;report�to="permissions_policy"

Reporting-Endpoints:

 coop_report="https:�����.facebook.com/browser_reporting/coop/?minimize=0",

 coep_report="https:�����.facebook.com/browser_reporting/coep/?minimize=0",

 default="https:�����.instagram.com/error/ig_web_error_reports/?device_level=unknown",

 permissions_policy="https:�����.instagram.com/error/ig_web_error_reports/"

1 report
The browser can generate a single report and send it…

 "type": "csp�violation",

{

 "age": 2,

 "body": {

 "blockedURL": "https:��site2.example/script.js",

 "disposition": "enforce",

 "documentURL": "https:��site.example",

 "effectiveDirective": "script�src�elem",

 "originalPolicy": "script�src 'self'; object�src 'none';

 "referrer": "https:��site.example",

 "sample": "",

 "statusCode": 200

 },

 "url": "https:��site.example",

 "user_agent": "Mozilla/5.0��� Chrome/92.0.4504.0"

}

N reports (batch)
…or send a batch of N reports.

 "type": "document�policy�violation",

 "type": "coep",

[

 {

 "age": 420,

 "body": {

 "columnNumber": 12,

 "disposition": "enforce",

 "lineNumber": 11,

 "message": "Document policy violation: document�write i

 "policyId": "document�write",

 "sourceFile": "https:��site.example/script.js"

 },

 "url": "https:��site.example/",

 "user_agent": "Mozilla/5.0��� Chrome/92.0.4504.0"

 },

 {

 "age": 510,

 "body": {

 "blockedURL": "https:��site.example/img.jpg",

 "destination": "image",

 "disposition": "enforce",

 "type": "corp"

 },

 "url": "https:��dummy.example/",

 "user_agent": "Mozilla/5.0��� Chrome/92.0.4504.0"

 }

]

Reports in Chrome DevTools

CSP reports in Report URI

COEP reports in Report URI

How secure are the top 1 million sites?
Scott Helme crawls the top 1 million sites each month and uses Security Headers to give them a grade.

Here are the grades from the February 2024 report:

A+ 4,544 (~0.59%)

A 43,012 (~5.57%)

B 34,871 (~4.52%)

C 34,440 (~4.47%)

D 151,558 (~19.63%)

E 21,550 (~2.79%)

F 479,586 (~62.13%)

R 112 (~0.01%)*

Total = 771,673**

*The R grade means the site responded with a redirect.

**I couldn't �nd any info on why the total is less than 1 million.

https://scotthelme.co.uk/tag/crawler-report/
https://securityheaders.com/

Details from the February 2024 crawler report

Type Name Total %

Con�guration Redirect HTTP to HTTPS 580,538 ~75.25

Header X-Frame-Options 233,397 ~30.22

Header directive report�to 221,996 ~28.76

Header NEL 220,512 ~28.57

Header HSTS 200,935 ~26.04

Header X-Content-Type-Options 196,160 ~25.41

Header X-XSS-Protection 142,383 ~18.45

Header Referrer-Policy 119,915 ~15.54

Header Content-Security-Policy 95,961 ~12.43

Header Permissions�policy 36,689 ~4.75

File security.txt 10,715 ~1.39%

Header Feature-Policy 4,888 ~0.63

Caching guidelines
Caching is important not just for performance, but also

for privacy and security.

It’s important to know how the many browser caches

work and how to con�gure the Cache-Control header.

CDNs (e.g. AWS CloudFront, GCP Media CDN) and

object storages (e.g. AWS S3, GCP Cloud Storage,

Cloud�are R2) de�ne their own caching behavior and

set different Cache�control directives for different

resources. Read the docs.

Caching is not just Cache-Control , but also ETag ,

Vary , etc.

A miscon�guration of caching headers can leave you

vulnerable to web cache poisoning.

Think about an appropriate caching policy for each

page and each resource of your application.

Security & privacy tips
Use no�store to avoid caching sensitive information.

Send a Clear-Site-Data response header to tell

the browser to purge browsing data (cookies, storage,

cache).

As Jake Archibald suggests in What happens when

packages go bad?, an /emergency URL could serve a

Clear-Site-Data: * header, deleting everything

stored & cached by the origin, then redirect to / .

Unfortunately, Clear-Site-Data is available only in

Chromium-based browsers.

Cache-Control: no�store

https://calendar.perfplanet.com/2016/a-tale-of-four-caches/
https://csswizardry.com/2019/03/cache-control-for-civilians/
https://portswigger.net/web-security/web-cache-poisoning
https://cwe.mitre.org/data/definitions/525.html
https://jakearchibald.com/2018/when-packages-go-bad/#recovering-after-a-successful-hack
https://jakearchibald.com/2018/when-packages-go-bad/#recovering-after-a-successful-hack
https://caniuse.com/?search=clear-site-data
https://caniuse.com/?search=clear-site-data

Wrap up

Tips

Use a web framework

Con�gure Strict-Transport-Security and Content-Security-Policy

Use a web security scanner like twa (tiny web auditor)

Do some labs on PortSwigger

Practice with OWASP Juice shop and SecureBank

Adopt a defense-in-depth approach

Fun facts

owasp.org has a CSP (grade A on Security Headers)

cheatsheetseries.owasp.org does NOT have a CSP (grade F on Security Headers)

https://github.com/trailofbits/twa
https://github.com/trailofbits/twa
https://portswigger.net/web-security/learning-paths
https://portswigger.net/web-security/learning-paths
https://github.com/juice-shop/juice-shop
https://github.com/juice-shop/juice-shop
https://github.com/ssrdio/SecureBank
https://github.com/ssrdio/SecureBank
https://owasp.org/
https://cheatsheetseries.owasp.org/

Extra

Learn more

HackInBo

OWASP Community Meetings

CS 253 Web Security (Stanford)

PortSwigger / HackTheBox / TryHackMe

Google Cybersecurity Professional Certi�cate (Coursera)

https://www.hackinbo.it/
https://owasp.org/www-community/meetings/
https://web.stanford.edu/class/cs253/
https://portswigger.net/
https://www.hackthebox.com/
https://tryhackme.com/
https://www.coursera.org/professional-certificates/google-cybersecurity

OWASP Top 10 Web Application Security Risks

1. Broken Access Control

2. Cryptographic Failures (previously known as Sensitive Data Exposure)

3. Injection (from 2021, Cross-site Scripting is part of this category)

4. Insecure Design

5. Security Miscon�guration

6. Vulnerable and Outdated Components

7. Identi�cation and Authentication Failures (previously known as Broken Authentication)

8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery

The OWASP Top 10 is updated every 3-4 years.

The previous version was published in 2017. The next update is planned for September 2024.

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/2017/Top_10.html
https://www.owasptopten.org/

Terminology

Sensitive data

PCI: Payment Card Industry

PHI: Protected Health Information

PII: Personally Identi�able Information

Laws & Regulations

� GDPR: General Data Protection Regulation

 HIPAA: Health Insurance Portability and Accountability Act

🌎 PCI DSS: Payment Card Industry Data Security Standard

https://en.wikipedia.org/wiki/Protected_health_information
https://en.wikipedia.org/wiki/Personal_data
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/Health_Insurance_Portability_and_Accountability_Act
https://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard

Cost of a data breach
Sample Data Breach Cost Calculator for PCI, PHI, PII

The Enforcement Tracker gives an overview of reported �nes and penalties which data protection

authorities within the EU have imposed so far.

Estimate the GDPR �ne for a German company

Violators of GDPR may be �ned up to €20 million, or up to 4% of the annual worldwide turnover of the preceding

�nancial year, whichever is greater.

Source: GDPR �nes and notices

Le banche devono adottare tutte le necessarie misure tecnico-organizzative e di sicurezza per evitare che i dati dei propri

clienti possano essere sottratti illecitamente.

Lo ha affermato il Garante per la privacy nel sanzionare UniCredit banca per una violazione di dati personali (data breach)

avvenuta nel 2018, che ha coinvolto migliaia di clienti ed ex clienti.

Source: Data breach: il Garante sanziona UniCredit per 2,8 milioni di euro (Multa di 800mila euro anche alla società

incaricata di effettuare i test di sicurezza)

https://eriskhub.com/mini-calc-usli
https://www.enforcementtracker.com/
https://www.enforcementtracker.com/?finemodel-germany
https://en.wikipedia.org/wiki/GDPR_fines_and_notices
https://en.wikipedia.org/wiki/GDPR_fines_and_notices
https://www.gpdp.it/web/guest/home/docweb/-/docweb-display/docweb/9991101
https://www.gpdp.it/web/guest/home/docweb/-/docweb-display/docweb/9991101
https://www.gpdp.it/web/guest/home/docweb/-/docweb-display/docweb/9991101

The end
http-response-headers-for-web-security.vercel.app

https://http-response-headers-for-web-security.vercel.app/
https://http-response-headers-for-web-security.vercel.app/

	HTTP headers for web security
	Speaker
	Why this talk?
	Where to start with web security?
	Can you spot the problem?
	Mixed content
	Should we redirect to HTTPS?
	HTTP Strict Transport Security (HSTS)
	X-Content-Type-Options
	Clickjacking
	X-Frame-Options and frame-ancestors
	Cross-Site Request Forgery
	When and how CSRF works?
	Anti-forgery tokens
	SameSite cookies
	Cross-Site Scripting (XSS)
	How dangerous is XSS?
	Likelihood and Impact of XSS vulnerabilities
	XSS proofs of concept to spot XSS vulnerabilities
	How do we mitigate XSS?
	CSP: How it started. How it's going
	CSP examples: Reddit & Twitter
	Learn CSP the hard way
	CSP bypasses
	Writing and maintaining a CSP
	origin
	origin vs site
	Cross-origin requests
	Same-origin policy
	Same-origin policy and CORS
	Access-Control-Allow-Origin
	CORS: public vs sensitive resources
	Same-origin policy and CORP, COEP and COOP
	Cross-Origin-Resource-Policy: same-site
	Cross-Origin-Embedder-Policy: require-corp
	Cross-Origin-Opener-Policy: same-origin
	Reporting API
	Reporting-Endpoints example: Instagram
	Reporting API: single or batch reports
	Report in Chrome DevTools
	CSP reports in Report URI
	COEP reports Report URI
	How secure are the top 1 million sites?
	Scott Helme's crawler report February 2024 details
	Caching
	Wrap up
	Q&A
	Bonus
	Terminology
	Cost of a data breach

