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WHO?
Luka Kladaric

formerly:
web developer for 10+ years

now:
architecture, infrastructure & security consultant

also a startup founder and remote work evangelist
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migrating an entire company's infrastructure

from Rackspace to Amazon AWS
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60 virtual machines

3 baremetal boxes (db)

assorted networking equipment
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the migration took 2 months to execute

but a year and a half to prepare...
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WHY?
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hand-crafted build server, unreproducible

jobs for 3 Android apps...
...each completely different
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massive monolthic 10 GB git repository

touching anything triggers a rollout of everything

no concept of "stable"
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half the servers are not deployable from scratch

or their deployability is unknown
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no local dev environments

half the company has to VPN into production to get any work done

everyone works directly on production systems

no db schema migration system == no db versioning
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horrible code review tool (Rietveld)

11 — Luka Kladaric @ Python Belgrade Jan 2018.



same mysql account used by everyone everywhere

>

>
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same mysql account used by everyone everywhere

that mysql account is "root"

>
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same mysql account used by everyone everywhere

that mysql account is "root"

that mysql db is 1.5 TB big
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no access to LB config

has a bunch of magic in it

changes often result in issues and outages
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no server metrics / perfdata

no idea if overprovisioned and by how much
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no access to disaster recovery instance
in case the primary DC went down

(access goes through primary DC)
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RACKSPACE WAS REALLY TERRIBLE
a constant pain to deal with

unexpected outages of never explained causes

unresponsive support team

zero flexibility
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HOW LONG WOULD IT TAKE TO MIGRATE THIS?
optimistically:

conservatively:

realistically:
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HOW LONG WOULD IT TAKE TO MIGRATE THIS?
optimistically: 3 months

conservatively:

realistically:
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HOW LONG WOULD IT TAKE TO MIGRATE THIS?
optimistically: 3 months

conservatively: 6-9 months (of dedicated work)

realistically:
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HOW LONG WOULD IT TAKE TO MIGRATE THIS?
optimistically: 3 months

conservatively: 6-9 months (of dedicated work)

realistically: a year (with interruptions)
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NO LEADERSHIP BUY-IN
2 failed attempts to get approval

Infrastructure team makes a pact
"Do Things The Right Way From Now On"

mask cleanup work with ongoing maintenance
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PLOT TWIST
RACKSPACE STARTS FALLING APART
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NEW ESTIMATE

19 man-days

(after final push for preparation)
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HOSTING COST ESTIMATE

before: $18k

after: $6k

savings: $12k (-66%!)
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GOT APPROVAL!
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Actually executed in 25-30 man-days

over 2 months
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HOW?
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build server rebuilt from scratch

deployed from Ansible

all build jobs defined in code
with inheritance and templating

tweaking jobs through UI disabled
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monolithic git repository split up
into 40 smaller repositories

changes trigger rollout only
on affected project
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all servers rebuilt and redeployed with Ansible

"upgrading the fleet to Ubuntu 16.04" ;)
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better code review tool (Phabricator)

allows code ownership
rules of engagement per repository

don't ask me about Phabricator
(it's amazing)
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most dev work doesn't require VPN any more

but even if it did...
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no more shared mysql root account (RIP)

no write access to production database
(to people *or* their software)

local dev environments!
(far from perfect)
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db schema migration system based on gh-ost

sql scripts
    -> code review
        -> git
            -> web ui to run
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all LB logic slowly moved to our own haproxies

haproxy configuration auto-generated from Ansible

makes it easy to shuffle things around
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all apps slowly migrated to be served through haproxies

avoiding Rackspace LB magic
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metrics, metrics, metrics

(Datadog ftw)
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TIME SPENT:
A YEAR AND A HALF
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AND ALL BEFORE WE HAD
APPROVAL TO DO ANYTHING

;)
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"yeah yeah yeah...

how did you do the actual migration?"
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VPN bridge between AWS and RS

~20 MB/s, ~20ms ping

good enough to treat as a "local" connection
for shorter periods of time
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mysql master-master replication between DCs

this was a massive pain to achieve with a 1.5TB db
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recreate the entire fleet in AWS
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app servers in both DCs (java+python)
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haproxies in both DCs

aware of app servers in both DCs
preferring local ones
but falling back to remote if necessary

"no request left behind"
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CloudFlare used for near-instant DNS failover

but even stray requests will get handled
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RESULTS
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core production migrated in days

internal tools migrated within a week or two

developer tools migrated within a month
(git hosting, build server, etc)

obscure legacy services migrated within 2 months
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all hardware at Rackspace
decomissioned within 3 months
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sideffect: actual HA instead of fake HA

old "two or more of everything" approach
translated well into Availability Zones
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cost estimate? right on the money.

once the dust settled
the $18k/mo bill from RS

was replaced
with a $6k/mo bill from AWS
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AND IT WAS GOOD
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The moral of this story is:

don't wait for permission to do your job right.
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1. If you see something broken, fix it
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1. If you see something broken, fix it

2. If you don't have time to fix it - write it down
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1. If you see something broken, fix it

2. If you don't have time to fix it - write it down

3. But do come back to it when you can steal a minute
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1. If you see something broken, fix it

2. If you don't have time to fix it - write it down

3. But do come back to it when you can steal a minute

4. Even if it takes months to make progress
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The team was well aware of how broken things were.

If we pushed for it to be a single massive
project, it would've never happened.
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QUESTIONS?
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THANK YOU!
Luka Kladaric
twitter: @kll
luka@sekura.io
www.sekura.io
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