
🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Pod Deep Dive
The Interesting Bits

Cloud Native Summit Munich
July 21st 2025

Hi 👋,

I’m Marcus Noble!

I’m a platform engineer at Giant Swarm
working on release engineering, CI/CD and
general Kubernetes development.

I run a monthly newsletter - CloudNative.Now

I’m a CNCF & Civo Ambassador.

7+ years experience running Kubernetes in
production environments.

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

https://cloudnative.now

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

So what is a “Pod”?

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Pods are the smallest deployable
units of computing that you can
create and manage in Kubernetes.

https://kubernetes.io/docs/concepts/workloads/pods/

https://kubernetes.io/docs/concepts/workloads/pods/

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

So what is a “Pod”?

● Smallest deployable unit of computing
● A wrapper around one or more containers (or WASM functions)
● Managed by the Kubernetes scheduler and assigned to nodes at runtime
● Workloads within a pod all share the same runtime context (Linux

namespaces, cgroups, network, etc)
● Designed to be relatively ephemeral and disposable
● Mostly immutable (only changes to image, activeDeadlineSeconds and

additions to tolerations are allowed)
○ v1.33 graduated in-place Pod resize to beta that allows changes to resources also

Our containers / WASM

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

But really, it’s much more than that! Too much to cover in fact!

So let’s talk about the interesting, weird or surprising bits!

So what is a “Pod”?

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Containers

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

● Enabled by default from v1.29 (feature
gate SidecarContainers)

● “Disguised” as initContainers 🤷
● Launched when Pod scheduled,

continues running until main application
containers have fully stopped, then
kubelet terminates all sidecars

● Supports readinessProbe (unlike
normal initContainers) and used to
determine the ready state of the Pod

● Termination handled more harshly than
app containers - SIGTERM followed by
SIGINT before graceful exit likely

apiVersion: v1
kind: Pod
metadata:
 name: "tiny-pod"
spec:
 initContainers:
 - name: logshipper
 image: alpine
 restartPolicy: Always
 On the container, not the Pod

Only allowed value

Sidecar Containers

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Ephemeral Containers

● Designed for debugging

● Must be added via a special
ephemeralcontainers handler,
not via the Pod spec (e.g. kubectl
debug)

● Not supported on static pods

● Can target specific container process
namespaces with optional
targetContainerName property

● No support for ports, probes,
resources or lifecycle on the
container spec

apiVersion: v1
kind: Pod
metadata:
 name: "tiny-pod"
spec:
 ephemeralContainers:
 - name: debugger-67t9x
 image: alpine
 targetContainerName: nginx

kubectl debug tiny-pod -it \
 --image=alpine \
 --target=nginx

Read only

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

● Every Pod includes an empty pause container which bootstraps the Pod with the cgroups, reservations
and namespaces before the defined containers are created

● This container can be thought of as a “parent container” for all the containers within your Pod and will
remain even if workload containers crash, ensuring namespaces and networking remain available

● The pause container is always present but not visible via the Kubernetes API

● Can be seen if you query directly on the node, e.g. with containerd:

~ # ctr -n k8s.io containers list | grep pause

03bfc9fa4bd0aebb0a9f84b1aad680f4b7 gsoci.azurecr.io/giantswarm/pause:3.9 io.containerd.runc.v2

05df0356a344c23d02afbff797742c67bd gsoci.azurecr.io/giantswarm/pause:3.9 io.containerd.runc.v2

066e0c8ee2962f276c4b7bb7d505e63f5b gsoci.azurecr.io/giantswarm/pause:3.9 io.containerd.runc.v2

0a6685e4d54e94c4acc36dbbb1a2b356de gsoci.azurecr.io/giantswarm/pause:3.9 io.containerd.runc.v2

Pause Container

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Images

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

● IfNotPresent - Fetches the image if not already on the node (default if you use a tag/sha)

● Always - Will always fetch the image (default if you use the tag as “latest” or omit the tag)

○ The cache mechanism compares the image layers from the registry and only pulls those missing

● Never - Will not attempt to fetch the image, it must be loaded onto the node by some other means

apiVersion: v1
kind: Pod
metadata:
 name: "tiny-pod"
spec:
 containers:
 - name: "nginx"
 image: "nginx:v1.2.3"
 imagePullPolicy: "Always"

Image Pull Policy

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

● Recommended best practice

● SHA-based image tag ensure exactly the same image is used each time, even if tag it overwritten

● If SHA is used, the tag is completely ignored and may no longer match the SHA! ⚠
○ Be careful with automated dependency updaters - make sure the sha is also updated!

Meaningless / Ignored

Image Tags - SHA

apiVersion: v1
kind: Pod
metadata:
 name: "tiny-pod"
spec:
 containers:
 - name: "nginx"
 image: "nginx:1.25.1@sha256:9d6b58feebd2db...2072c9496"
 imagePullPolicy: "Always"

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

RuntimeClass

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

RuntimeClass apiVersion: v1
kind: Pod
metadata:
 name: "tiny-pod"
spec:
 runtimeClassName: "crio-runtime"
 containers:
 - name: "demo"
 image: "nginx:latest"

apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
 name: "crio-runtime"
scheduling:
 nodeSelector:
 runtime: "crio"
handler: "crio"

● Allows for multiple runtimes in a single cluster

● If unset, uses default Container Runtime
Interface (CRI) configured on the node

● If set, must point to a RuntimeClass resource
name and have the CRI handler configured up
on the node

● The scheduling property of the
RuntimeClass ensures Pods are scheduled
onto nodes with that runtime available (based on
label selectors)

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

● Allows for multiple runtimes in a single cluster

● If unset, uses default Container Runtime
Interface (CRI) configured on the node

● If set, must point to a RuntimeClass resource
name and have the CRI handler configured up
on the node

● The scheduling property of the
RuntimeClass ensures Pods are scheduled
onto nodes with that runtime available (based on
label selectors)

● Can be used for WASM (web assembly) runtimes,
not just containers

RuntimeClass apiVersion: v1
kind: Pod
metadata:
 name: "wasm-pod"
spec:
 runtimeClassName: "wasmedge"
 containers:
 - name: "demo"
 image: "my-wasm-demo:latest"

apiVersion: node.k8s.io/v1
kind: RuntimeClass
metadata:
 name: "wasmedge"
scheduling:
 nodeSelector:
 runtime: "wasmedge"
handler: "wasmedge"

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Static Pods

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Static Pods

● Managed directly by the Kubelet, not the API server

● Defined as static manifests either:

○ on disk of the node in the directory defined by --pod-manifest-path

○ or referenced from an URL using the --manifest-url flag

● The Kubelet automatically tries to create a “mirror Pod” on the
API for each static Pod so that they are visible when querying
the API server but they cannot be modified via the API

● Pod names get the node name as a suffix
(e.g. kube-scheduler-control-plane-1)

● Cannot refer to other resources (e.g. ConfigMaps)

● The Kubelet watches the static directory and reconciles when
files are changed/added/removed

apiVersion: v1
kind: Pod
metadata:
 name: kube-scheduler
 namespace: kube-system
spec:
 containers:
 - name: kube-scheduler
 image: kube-scheduler:v1.32.0
 command:
 - kube-scheduler

File stored on the host node disk

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Lifecycle Hooks

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Lifecycle Hooks

● Guaranteed to trigger at least once but may be called multiple
times.

● postStart

○ Runs immediately after container is created but no
guarantee that it will execute before the container’s
ENTRYPOINT.

○ The container isn’t marked as “running” until this
completes.

● preStop

○ Runs immediately before the container is terminated.

● Hook mechanisms available:

○ exec - perform command in container
○ httpGet - perform an HTTP GET request to the

container

apiVersion: v1
kind: Pod
metadata:
 name: cilium-agent
spec:
 containers:
 - name: cilium-agent
 image: "cilium:latest"
 lifecycle:
 postStart:
 exec:
 command:
 - /bin/bash
 - -ec
 - |
 if [["$(iptables-save | grep -E -c 'AWS-SNAT-CHAIN)"
 iptables-save | grep -E -v 'AWS-SNAT-CHAIN' | ipta
 fi
 preStop:
 exec:
 command:
 - /opt/bitnami/scripts/cilium/uninstall-cni-plugin.sh
 - /host

Example based on the Cilium chart provided by Bitnami

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Conditions
& Readiness Gates

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Conditions

Kubelet manages the following Pod Conditions:

● PodScheduled - the Pod has been scheduled to a node
● PodReadyToStartContainers - (beta feature) the Pod

sandbox has been created and networking configured
● ContainersReady - all containers in the Pod are ready
● Initialized - all the initContainers have completed
● Ready - all containers ready and probes successfully passing

Each status condition may also contain…

● A 🤖machine readable reason property and
● A 🧑human readable message property

…that can be used for debugging.

apiVersion: v1
kind: Pod
metadata:
 name: "demo-pod"
spec:
 ...
status:
 conditions:
 - type: Ready
 status: "False"
 lastProbeTime: null
 - type: PodScheduled
 status: "True"
 lastProbeTime: null

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

When container status and probes aren’t enough to determine is a Pod really is ready then there is
readinessGates!

These must me handled by some external application that patches the status of the Pod once the readiness
gate condition is met.

Example usage: AWS Load Balancer supports readiness gates to indicate a pod is registered to the ALB/NLB.

apiVersion: v1
kind: Pod
metadata:
 name: "aws-alb-example"
spec:
 readinessGates:
 - conditionType: "target-health.elbv2.k8s.aws/k8s-readines-perf1000-7848e5026b"
status:
 conditions:
 - type: "target-health.elbv2.k8s.aws/k8s-readines-perf1000-7848e5026b"
 status: "False"
 message: "Initial health checks in progress"
 reason: "Elb.InitialHealthChecking"

Readiness Gates

https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.1/deploy/pod_readiness_gate/

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Config

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Config
Environment Variables

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Environment Variables

● Hardcoded & Dynamic, leveraging other environment
variables with the $(ENV) syntax

apiVersion: v1
kind: Pod
metadata:
 name: "demo-pod"
spec:
 containers:
 - name: demo
 image: nginx
 env:
 - name: NAME
 value: "World"
 - name: GREETING
 value: "Hello, $(NAME)"

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Environment Variables

● Hardcoded & Dynamic, leveraging other environment
variables with the $(ENV) syntax

● The Downward API allows exposing properties from the
Pod fields as env vars.
Not all fields are valid but you can use fields from the
Pod’s metadata, spec, limits and status.

apiVersion: v1
kind: Pod
metadata:
 name: "demo-pod"
spec:
 containers:
 - name: demo
 image: nginx
 env:
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: NODE_NAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 - name: CONTAINER_MEM_LIMIT
 valueFrom:
 resourceFieldRef:
 containerName: demo
 resource: limits.memory

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Config
Volumes

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Volumes

��

apiVersion: v1
kind: Pod
metadata:
 name: "demo-pod"
spec:
 containers:
 - name: demo
 image: nginx
 volumes:
 - name: config-vol
 configMap:
 name: sensitive-html
 - name: secret-vol
 secret:
 secretName: demo-html

● ConfigMaps vs. Secrets - name vs. secretName

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Volumes

● ConfigMaps vs. Secrets - name vs. secretName

● Downward API

Becomes the filename

apiVersion: v1
kind: Pod
metadata:
 name: "demo-pod"
spec:
 containers:
 - name: demo
 image: nginx
 volumeMounts:
 - name: podinfo
 mountPath: /etc/podinfo
 volumes:
 - name: podinfo
 downwardAPI:
 items:
 - path: "labels"
 fieldRef:
 fieldPath: metadata.labels
 - path: "annotations"
 fieldRef:
 fieldPath: metadata.annotat

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Volumes

● ConfigMaps vs. Secrets - name vs. secretName

● Downward API

● EmptyDir

apiVersion: v1
kind: Pod
metadata:
 name: "demo-pod"
spec:
 containers:
 - name: demo
 image: nginx
 volumes:
 - name: cache-volume
 emptyDir:
 medium: Memory
 sizeLimit: 500Mi

Recommended to avoid filling host node disk

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Volumes

● ConfigMaps vs. Secrets - name vs. secretName

● Downward API

● EmptyDir

● Projected

apiVersion: v1
kind: Pod
metadata:
 name: "demo-pod"
spec:
 containers:
 - name: demo
 image: nginx
 volumeMounts:
 - name: web-content
 mountPath: /usr/share/nginx/html
 volumes:
 - name: web-content
 projected:
 sources:
 - configMap:
 name: web-index
 items:
 - key: index.html
 path: index.html
 - configMap:
 name: error-pages

Entire contents of ConfigMap data

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Volumes

● ConfigMaps vs. Secrets - name vs. secretName

● Downward API

● EmptyDir

● Projected

● Image (KEP #4639)

○ Alpha in v1.31, Beta in v1.33, disabled by default

○ Allows mounting an OCI image as a volume

○ Pull secrets handled the same as container images

○ Container runtime needs to support it (CRI-O and
Containerd have initial support available)

apiVersion: v1
kind: Pod
metadata:
 name: "demo-pod"
spec:
 containers:
 - name: demo
 image: nginx
 volumeMounts:
 - name: oci-content
 mountPath: /usr/share/nginx/html
 readOnly: true
 volumes:
 - name: oci-content
 image:
 reference: quay.io/crio/artifact:v1
 pullPolicy: IfNotPresent

https://github.com/kubernetes/enhancements/issues/4639

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Scheduling

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Scheduling
Resource Allocation

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

● Requests - min resources free on node to be scheduled

● Limits - enforced amount of resources a container has
○ CPU - enforced by CPU throttling
○ Memory - enforced by kernel out of memory

(OOM) terminations

Resource Requests & Limits
apiVersion: v1
kind: Pod
metadata:
 name: "demo-pod"
spec:
 containers:
 - name: demo
 image: nginx
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"

Very brief overview!

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

● Requests - min resources free on node to be scheduled

● Limits - enforced amount of resources a container has
○ CPU - enforced by CPU throttling
○ Memory - enforced by kernel out of memory

(OOM) terminations

● Custom resource types can be managed by 3rd party
controllers (e.g. nvidia.com/gpu)
○ Requests & limits must be the same
○ You cannot specify requests without limits

Resource Requests & Limits
apiVersion: v1
kind: Pod
metadata:
 name: "demo-pod"
spec:
 containers:
 - name: demo
 image: nginx
 resources:
 requests:
 nvidia.com/gpu: 1
 limits:
 nvidia.com/gpu: 1

For GPU resources

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Resource Requests & Limits

● Requests - min resources free on node to be scheduled

● Limits - enforced amount of resources a container has
○ CPU - enforced by CPU throttling
○ Memory - enforced by kernel out of memory

(OOM) terminations

● Custom resource types can be managed by 3rd party
controllers (e.g. nvidia.com/gpu)
○ Requests & limits must be the same
○ You cannot specify requests without limits

● Pod limit and requests are calculated from the sum of all
the containers
○ v1.32 introduces a new alpha (disabled by default)

feature that supports pod-level resource
specification

apiVersion: v1
kind: Pod
metadata:
 name: "demo-pod"
spec:
 resources:
 requests:
 memory: "100Mi"
 limits:
 memory: "200Mi"
 containers:
 - name: demo
 image: nginx

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Node Assignment

● topologySpreadConstraints - more control over the
spread of Pods across a cluster when scaling replicas
○ skew = number of pods in topology - min pods in any topology
○ topologyKey - the label on nodes to use as the groupings

(usually failure domains)
○ whenUnsatisfiable - Either DoNotSchedule or

ScheduleAnyway
○ No guarantee the constraints remain satisfied when Pods are

removed (e.g. scaling down)
○ Combined with other node assignment strategies (e.g. affinity)

apiVersion: v1
kind: Pod
metadata:
 name: "demo-pod"
 labels:
 app: nginx
spec:
 topologySpreadConstraints:
 - maxSkew: 1
 topologyKey: zone
 whenUnsatisfiable: DoNotSchedule
 labelSelector:
 matchLabels:
 app: nginx
 containers:
 - name: demo
 image: nginx

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

DNS

● Usually, depending on the DNS mechanism used in the
cluster (e.g. CoreDNS), each Pod also gets an A record

○ E.g. 172-17-0-3.default.pod.cluster.local

● A Pods hostname is set to its metadata.name by
default but can be overridden with the
spec.hostname property and an additional
subdomain set with spec.subdomain

○ E.g.
my-demo.example.default.svc.cluster.local

○ (This doesn’t mean other Pods can resolve that hostname)

● Add extra entries to the Pods /etc/hosts file with
spec.hostAliases

apiVersion: v1
kind: Pod
metadata:
 name: demo
spec:
 hostname: my-demo
 subdomain: example
 setHostnameAsFQDN: true
 hostAliases:
 - ip: "127.0.0.1"
 hostnames:
 - "demo.local"
 containers:
 - name: demo
 image: nginx

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Scheduling
Scheduler Logic

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Priority & Preemption

● Pods can be given a priority to indicate their
importance compared to other Pods. If a Pod is
unable to be scheduled and has a higher priority than
already scheduled Pods the scheduler will evict
(preempt) the lower priority to make room

● PriorityClass resource is used to define possible
priorities in a cluster

● PodDisruptionBudget are handled on a best-effort
basis and not guaranteed to be honoured

● You can avoid preempting lower priority Pods by
setting preemptionPolicy: Never on the
PriorityClass

○ This effects the scheduler queue but doesn’t
cause pods to be evicted

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
 name: high-priority
value: 1000000
globalDefault: false
description: These pods are important

apiVersion: v1
kind: Pod
metadata:
 name: demo
spec:
 priorityClassName: high-priority
 containers:
 - name: demo
 image: nginx

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Multiple / Alternative Schedulers

● schedulerName - indicates which scheduler a Pod
should be managed by

● In not set, or set to default-scheduler then the
built-in Kubernetes scheduler is used

apiVersion: v1
kind: Pod
metadata:
 name: demo
spec:
 schedulerName: custom-scheduler
 containers:
 - name: demo
 image: nginx

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

Networking

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

DNS Policy

● Define how the Pods DNS configuration defaults should
be specified:

○ Default - inherits the nodes DNS resolution
config

○ ClusterFirst - matches against in-cluster
resources first before sending forwarding to an
upstream nameserver

○ ClusterFirstWithHostNet - should be used
when using host network otherwise the Pod will
fallback to Default

○ None - ignores all DNS config from cluster and
expects all to be set via dnsConfig

apiVersion: v1
kind: Pod
metadata:
 name: demo
spec:
 dnsPolicy: ClusterFirst
 containers:
 - name: demo
 image: nginx

Actually
the default
value 🤷

🐘 @Marcus@k8s.social | 🌐 MarcusNoble.com | 🦋 @averagemarcus.bsky.social

DNS Config

● More control over the DNS settings used within a Pod

● nameservers - a list of IPs to use as the DNS servers
(max 3)

● searches - list of DNS search domains to use for
hostname lookup, merged into the base search domains
generated (max 32)

● options - a list of name/value pairs to define extra
DNS configuration options

cat /etc/resolv.conf
nameserver 192.0.2.1
search ns1.svc.cluster.example my.dns.custom
options ndots:2 edns0

apiVersion: v1
kind: Pod
metadata:
 name: demo
spec:
 containers:
 - name: busybox
 image: nginx
 dnsPolicy: "None"
 dnsConfig:
 nameservers:
 - 192.0.2.1
 searches:
 - ns1.svc.cluster.example
 - my.dns.custom
 options:
 - name: ndots
 value: "2"
 - name: edns0

Only use the below config

Wrap-up
Slides and resources available at:

Thoughts, comments and feedback:

 MarcusNoble.com

 k8s.social/@Marcus

 @averagemarcus.bsky.social Thank you

https://go-get.link/cnsmunich

https://marcusnoble.com
https://k8s.social/@Marcus
https://bsky.app/profile/averagemarcus.bsky.social
https://go-get.link/cnsmunich

