
Extending Elasticsearch

Writing plugins, fast and easy!

Alexander Reelsen
@spinscale
alex@elastic.co

mailto:alex@elastic.co

Elasticsearch in 10 seconds

Search Engine (FTS, Analytics, Geo), real-time

Distributed, scalable, highly available, resilient

Interface: HTTP & JSON

Centrepiece of the Elastic Stack (Kibana, Logstash, Beats,
APM, ML, App/Site/Enterprise Search)

Uneducated guess: Tens of thousands of clusters
worldwide, hundreds of thousands of instances

Agenda

Overview

Building

Testing

Releasing

Extension points

Overview
Requirements, gotchas and some details

Overview

Plugins are zip files

own jars/dependencies

loaded with its own classloader

own security permissions

Security Manager? Permissions? But why?!

Sandbox your java application

Prevent certain calls by your application

Policy file grants permissions

FilePermission (read, write)

SocketPermission (connect, listen, accept)

URLPermission, PropertyPermission, ...

Security Manager? Permissions? But why?!

Each plugin needs to be packaged with a policy that
grants certain operations

Building
gradle clean assemble

Overview

A plugin needs to be released for an Elasticsearch
patch release

Use the gradle plugin! Batteries included, lots of them

Integration tests, license checks, checkstyle, notice
files

Testing
gradle clean check

Overview

Unit tests: ESTestCase

Integration tests: YAML

Download ES, install plugin, start ES, run tests
against HTTP

ESTestCase

Randomized testing

Logger

Thread leak detector

Deprecation warnings detection

Test method names have to begin with void test...()

assertBusy/awaitBusy

Extension points
class MyPlugin extends Plugin

Overview

 ActionPlugin: Implement own actions, REST endpoints

 AnalysisPlugin: Add custom parts to analysis chain

 ClusterPlugin: Implement own shard allocation logic

 DiscoveryPlugin: Add (often API based) host discovery

 IngestPlugin: Custom ingest processors

 MapperPlugin: Custom mapping data types

 NetworkPlugin: Network implementations (i.e. netty replacement)

 RepositoryPlugin: Snapshot/restore repository implementations

 ScriptPlugin: Script Engines, Script Contexts

 SearchPlugin: Queries, Highlighter, Suggester, Aggregations, Rescoring, Search Extensions

 ReloadablePlugin: Ensure a plugin can reload its state

Overview

main class: org.elasticsearch.plugins.Plugin

settings registration & filter

custom cluster state metadata

cluster state listener

index modules (search listener, index event listener)

Plugin Loading
[INFO][o.e.p.PluginsService] [node] loaded module [lang-mustache]

Overview

PluginService

check for modules & plugins directory

check jar hell

check version

create classloader

reload lucene SPI

load Plugin class

instantiate Plugin class

Show me the code!

Ingest lang-detect processor

PUT _ingest/pipeline/langdetect-pipeline

{

 "processors": [

 {

 "langdetect" : {

 "field" : "my_field",

 "target_field" : "language"

 }

 }

]

}

Ingest lang-detect processor

PUT /my-index/my-type/1?pipeline=langdetect-pipeline

{
 "my_field" : "This is hopefully an english text, that will be
detected."

}

GET /my-index/my-type/1

{

 "my_field" : "This is hopefully an english text, that will be
detected.",
 "language": "en"

}

Custom query parser

Ecommerce use-case

clean data

non expert searches

Custom query parser

xlrunning hoodienike

Custom query parser

xlrunning hoodienike

Custom query parser

xlrunning hoodienike}

brand

}

size

Custom query parser

PUT my_products

{
 "settings": {

 "index.queryparser.values" : {

 "brands" : ["nike", "adidas", "puma", "salomon"],
 "size" : ["m", "xl", "l", "s", "xs", "xxs", "xxl"]

 }

 }
}

Custom query parser

GET my_products/_search

{

 "query": {

 "custom" : {

 "title": "nike running hoodie XL"

 }

 }

}

DEMO

Summary
When is your plugin ready again?

Summary

Writing own plugins is not that hard

Testing plugins is incredibly easy with gradle

Release via github or sonatype

Thanks for listening!
Questions?

Alexander Reelsen
@spinscale
alex@elastic.co

mailto:alex@elastic.co

Resources
https://github.com/elastic/elasticsearch/
https://github.com/elastic/elasticsearch/tree/7.1/plugins/examples
https://github.com/spinscale/elasticsearch-ingest-opennlp
https://github.com/spinscale/elasticsearch-ingest-langdetect
https://github.com/spinscale/cookiecutter-elasticsearch-ingest-processor

https://github.com/elastic/elasticsearch/
https://github.com/elastic/elasticsearch/tree/7.1/plugins/examples
https://github.com/spinscale/elasticsearch-ingest-opennlp
https://github.com/spinscale/elasticsearch-ingest-langdetect
https://github.com/spinscale/cookiecutter-elasticsearch-ingest-processor

Thanks for listening!
Questions?

Alexander Reelsen
@spinscale
alex@elastic.co

mailto:alex@elastic.co

