Extending Elasticsearch

Writing plugins, fast and easy!

Alexander Reelsen
@spinscale
alex@elastic.co

@ elastic

mailto:alex@elastic.co

Elasticsearch in 10 seconds

& Search Engine (FTS, Analytics, Geo), real-time
& Distributed, scalable, highly available, resilient

& Interface: HTTP & JSON

& Centrepiece of the Elastic Stack (Kibana, Logstash, Beats,
APM, ML, App/Site/Enterprise Search)

& Uneducated guess: Tens of thousands of clusters
worldwide, hundreds of thousands of instances

Agenda

& Overview
& Building
& Testing
& Releasing

& Extension points

Overview

Requirements, gotchas and some details

Overview

& Plugins are zip files
& own jars/dependencies
% loaded with its own classloader

& own security permissions

Security Manager? Permissions? But why?!

& Sandbox your java application
& Prevent certain calls by your application
% Policy file grants permissions
& FilePermission (read, write)
& SocketPermission (connect, listen, accept)

% URLPermission, PropertyPermission, ...

Security Manager? Permissions? But why?!

% Each plugin needs to be packaged with a policy that
grants certain operations

grant {
// needed to do crazy reflection
permission java. lang.RuntimePermission "accessDeclaredMembers";

};

Building

gradle clean assemble

Overview

% A plugin needs to be released for an Elasticsearch
patch release

% Use the gradle plugin! Batteries included, lots of them

& Integration tests, license checks, checkstyle, notice
files

Testing

gradle clean check

Overview

& Unit tests: ESTestCase

& Integration tests: YAML

& Download ES, install plugin, start ES, run tests
against HTTP

ESTestCase

% Randomized testing

% Logger

% Thread leak detector

% Deprecation warnings detection

% Test method names have to begin with void test... ()

% assertBusy/awaitBusy

Extension points

class MyPlugin extends Plugin

Overview

& ActionPlugin: Implement own actions, REST endpoints

& AnalysisPlugin: Add custom parts to analysis chain

& ClusterPlugin: Implement own shard allocation logic

& DiscoveryPlugin: Add (often API based) host discovery

& IngestPlugin: Custom ingest processors

& MapperPlugin: Custom mapping data types

& NetworkPlugin: Network implementations (i.e. netty replacement)

& RepositoryPlugin: Snapshot/restore repository implementations

& ScriptPlugin: Script Engines, Script Contexts

& SearchPlugin: Queries, Highlighter, Suggester, Aggregations, Rescoring, Search Extensions

& ReloadablePlugin: Ensure a plugin can reload its state

Overview

% main class: org.elasticsearch.plugins.Plugin
& settings registration & filter

& custom cluster state metadata

% cluster state listener

% index modules (search listener, index event listener)

Plugin Loading

[INFO] [o.e.p.PluginsService] [node] loaded module [lang-mustache]

Overview

& PluginService

% check for modules & plugins directory
& check jar hell

% check version

& create classloader

& reload lucene SPI

% load Plugin class

& instantiate Plugin class

Ingest lang-detect processor

PUT _ingest/pipeline/langdetect-pipeline
{

"processors": |

{
"langdetect" : {
"field" : "my_field",
"target_field" : "language"
}
}

Ingest lang-detect processor

PUT /my-index/my-type/1?pipeline=langdetect-pipeline
{

"my_field" : "This is hopefully an english text, that will be
detected."

}

GET /my-index/my-type/1
{

"my_field" : "This is hopefully an english text, that will be
detected.",

"language”: "en

Custom query parser

& Ecommerce use-case
& clean data

% non expert searches

Custom query parser

nike running hoodie xI

Custom query parser

nike running hoodie x|

Custom query parser

nike running hoodie x|
—— Cgd

brand size

Custom query parser

PUT my_products

{
"settings": {
"index.queryparser.values" : {
"brands" : ["nike", "adidas", "puma", "salomon"],
"size" : ["m", "x1", "1", "s", "xs", "xxs", "xx1"]
}
}

Custom query parser

GET my_products/_search

{
llqueryll : {
"custom" : {

"title": "nike running hoodie XL"

Summary

When is your plugin ready again?

Summary

% Writing own plugins is not that hard
& Testing plugins is incredibly easy with gradle

% Release via github or sonatype

Thanks for listening!

Questions?

Alexander Reelsen
@spinscale
alex@elastic.co

@ elastic

mailto:alex@elastic.co

Resources

& https://github.com/elastic/elasticsearch/
& https://github.com/elastic/elasticsearch/tree/7.1/plugins/examples

& https://github.com/spinscale/elasticsearch-ingest-opennip
& https://github.com/spinscale/elasticsearch-ingest-langdetect

& https://github.com/spinscale/cookiecutter-elasticsearch-ingest-processor

https://github.com/elastic/elasticsearch/
https://github.com/elastic/elasticsearch/tree/7.1/plugins/examples
https://github.com/spinscale/elasticsearch-ingest-opennlp
https://github.com/spinscale/elasticsearch-ingest-langdetect
https://github.com/spinscale/cookiecutter-elasticsearch-ingest-processor

Thanks for listening!

Questions?

Alexander Reelsen
@spinscale
alex@elastic.co

@ elastic

mailto:alex@elastic.co

