
Object	Calisthenics
9	steps	to	better	OO	code

Agenda

Learn	how	to	make	our	code	more:

readable
reusable
testable
maintainable

Raise	you	hand	if	you	know
one	of	the	following:

DRY
KISS
SOLID
YAGNI
Zen	of	Python

Calisthenics

Cal	•	is	•	then	•	ics	-	/ˌkaləsˈTHeniks/

"Calisthenics	are	exercises	consisting	of	a
variety	of	gross	motor	movements;	often

rhythmical	and	generally	without	equipment
or	apparatus."

Wikipedia

Object	Calisthenics

Jeff	Bay

https://www.cs.helsinki.fi/u/luontola/tdd-2009/ext/ObjectCalisthenics.pdf

Written	for	Java

Why	bother?

Code	is	read	more
than	it's	written

Rule	#1

Only	one	level	of
indentation	per	method

class	Board(object):
				def	__init__(self,	data):
								#	Level	0
								self.buf	=	""
								for	i	in	range(10):
												#	Level	1
												for	j	in	range(10):
																#	Level	2
																self.buf	+=	data[i][j]

class	Board(object):
				def	__init__(self,	data):
								self.buf	=	""
								self.collect_rows(data)
				
				def	collect_rows(self,	data):
								for	i	in	range(10):
												self.collect_row(data[i])
												
				def	collect_row(self,	row):
								for	j	in	range(10):
												self.buf	+=	row[j]

Benefits

Single	responsibility
Better	naming
Shorter	methods
Reusable	methods

Rule	#2

Do	not	use	else	keyword

if	options.getCategories()	is	None:
				...
elif	len(options.getCategories())	==	1:
				...
elif	SPECIAL_CATEGORY	in	options.getCategories():
				...
elif	options.getCategories()	and	options.getQuery():
				...
elif	options.getContentType():
				...

def	login	(self,	request):
				if	request.user.is_authenticated():
								return	redirect("homepage")
				else:
								messages.add_message(request,	
																													messages.INFO,	
																													'Bad	credentials')
								return	redirect("login")

def	login	(self,	request):
				if	request.user.is_authenticated():
								return	redirect("homepage")

				messages.add_message(request,	
																									messages.INFO,	
																									'Bad	credentials')
				return	redirect("login")

Extract	code

Default	value

Polymorphism

Strategy	pattern

State	pattern

Benefits
Avoids	code	duplication
Lower	complexity
Readability

Rule	#3

Wrap	primitive	types	if	it
has	behaviour

Value	Object	in	DDD

class	Validator(object):
				def	check_date(self,	year,	month,	day):
								pass

#	10th	of	December	or	12th	of	October?
validator	=	Validator()
validator.check_date(2016,	10,	12)

class	Validator(object):
				def	check_date(year:	Year,	month:	Month,	day:	Day)	->	bool:
								pass

#	Function	call	leaves	no	doubt.
validator.check_date(Year(2016),	Month(10),	Day(12))

Benefits
Encapsulation
Type	hinting
Attracts	similar	behaviour

Rule	#4

Only	one	dot	per	line

OK:	Fluent	interface

class	Poem(object):
				def	__init__(self,	content):
								self.content	=	content

				def	indent(self,	spaces):
								self.content	=	"	"	*	spaces	+	self.content
								return	self

				def	suffix(self,	content):
								self.content	=	self.content	+	"	-	"	+	content
								return	self

Poem("Road	Not	Travelled").indent(4)\
				.suffix("Robert	Frost").content

Not	OK:	getter	chain

class	CartService(object):
				def	get_token(self):
								token	=	self.get_service('auth')\
												.auth_user('user',	'password')\
												.get_result()\
												.get_token()

								return	token

#	1.	What	if	None	is	returned	instead	of	object?
#	2.	How	about	exceptions	handling?

class	Location(object):
				def	__init__(self):
								self.current	=	Piece()

class	Piece(object):
				def	__init__(self):
								self.representation	=	"	"

class	Board(object):
				def	board_representation(self,	board):
								buf	=	''
								for	field	in	board:
												buf	+=	field.current.representation

								return	buf

class	Location(object):
				def	__init__(self):
								self.current	=	Piece()
								
				def	add_to(self,	buffer):
								return	self.current.add_to(buffer)

class	Piece(object):
				def	__init__(self):
								self.representation	=	"	"
								
				def	add_to(self,	buffer):
								return	buffer	+	self.representation

class	Board(object):
				def	board_representation(self,	board):
								buf	=	''
								for	field	in	board:
												buf	=	field.add_to(buf)

								return	buf

Benefits
Encapsulation
Demeter's	law
Open/Closed	Principle

Rule	#5

Do	not	abbreviate

Why	abbreviate?

Too	many	responsibilities

Name	too	long?

Split	&	extract

Duplicated	code?

Refactor!

Benefits
Clear	intentions
Indicate	underlying	problems

Rule	#6

Keep	your	classes	small

What	is	small	class?
15-20	lines	per	method
50	lines	per	class
10	classes	per	module

Benefits
Single	Responsibility
Smaller	modules

Rule	#7

No	more	than	2	instance
	variable	per	class

Class	should	handle	single
variable	state

In	some	cases	it	might	be
two	variables

class	CartService(object):
				def	__init__(self):
								self.logger	=	Logger()
								self.cart	=	CartCollection()
								self.translationService	=	TranslationService()
								self.authService	=	AuthService()
								self.userService	=	UserService()

Benefits
High	cohesion
Encapsulation
Fewer	dependencies

Rule	#8

First	class	collections

collections	module

Benefits
Single	Responsibility

Rule	#9

Do	not	use	setters/getters

Accessors	are	fine

Don't	make	decisions
outside	of	class

Let	class	do	it's	job

Tell,	don't	ask

class	Game(object):
				def	__init__(self):
								self.score	=	0

				def	set_score(self,	score):
								self.score	=	score

				def	get_score(self):
								return	self.score

#	Usage
ENEMY_DESTROYED_SCORE	=	10
game	=	Game()
game.set_score(game.get_score()	+	ENEMY_DESTROYED_SCORE)

class	Game(object):
				def	__init__(self):
								self.score	=	0
				
				def	add_score(self,	score):
								self.score	+=	score

#	Usage
ENEMY_DESTROYED_SCORE	=	10
game	=	Game()
game.add_score(ENEMY_DESTROYED_SCORE)

Benefits
Open/Closed	Principle

Catch	'em	all!	

Catch	'em	all!	
1.	 Only	one	level	of	indentation	per	method,
2.	 Do	not	use	else	keyword,
3.	 Wrap	primitive	types	if	it	has	behavior,
4.	 Only	one	dot	per	line,
5.	 Don’t	abbreviate,
6.	 Keep	your	entities	small,
7.	 No	more	than	two	instance	variable	per	class,
8.	 First	Class	Collections,
9.	 Do	not	use	accessors

Catch	'em	all!	
1.	 Only	one	level	of	indentation	per	method,
2.	 Do	not	use	else	keyword,
3.	 Wrap	primitive	types	if	it	has	behavior,
4.	 Only	one	dot	per	line,
5.	 Don’t	abbreviate,
6.	 Keep	your	entities	small,
7.	 No	more	than	two	instance	variable	per	class,
8.	 First	Class	Collections,
9.	 Do	not	use	accessors
10.	 ???
11.	 PROFIT!

Homework

Create	new	project	up	to
1000	lines	long

Apply	presented	rules	as
strictly	as	possible

Draw	your	own	conculsions

Customize	these	rules

Final	thoughts

These	are	not	best	practices

These	are	just	guidelines

Use	with	caution!

Questions?

Thank	you!

