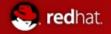
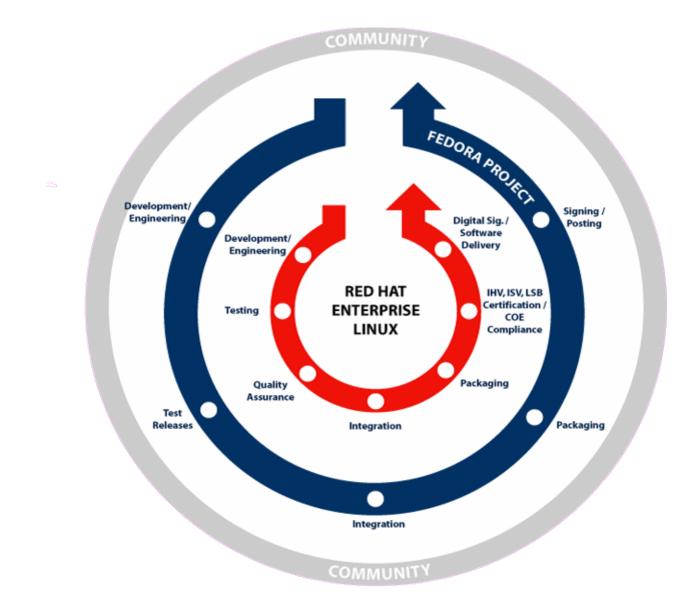


Red Hat Security Seminar

Shawn D. Wells (swells@redhat.com) Solutions Architect, Federal Team


Agenda

- Start: 10:30 am
- End: 1:00 pm, ish
- Red Hat Emerging Technologies
- Red Hat Security
- Summary & Close



Hands On & Labs

Red Hat Development Model

Open Source – A Better Way

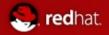
- Returns control
- Security reinforced through transparency
- Multiplies the development capacity

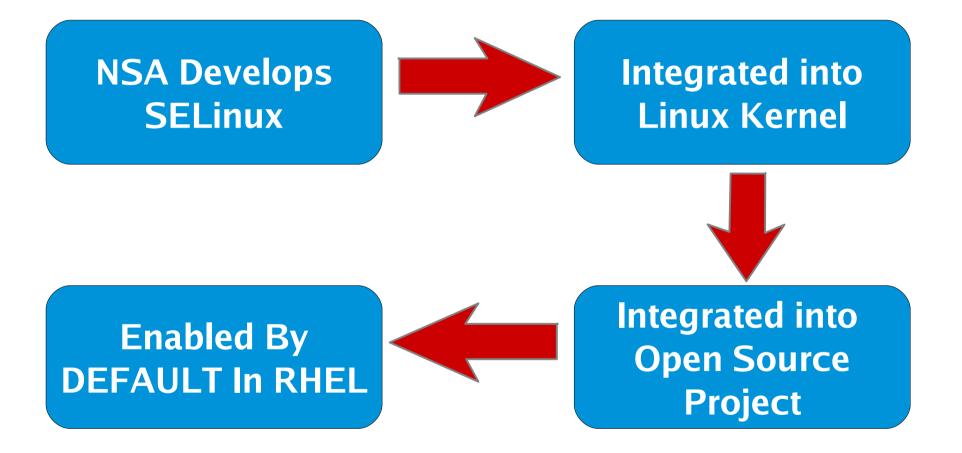
Bugs per 1000 Lines of Code

Linux 2.6 Kernel Proprietary Software 10 to 20

0.17

Stanford University/Cover Carnegie Mellon Cylab


Wired Magazine, Dec 2004


Open Source as a Security Innovation

- Time from a critical issue being known to the public until the day that fix available
 - Red Hat Enterprise Linux 4
 - FEB 2005 FEB 2006

SELinux: Building Security Openly

Customers, NSA, Community, and Red Hat continue evolution

Red Hat Security Certifications

NIAP/Common Criteria: The most evaluated operating system platform

- Red Hat Enterprise Linux 2.1 EAL 2 (Completed: February 2004)
- Red Hat Enterprise Linux 3 EAL 3+/CAPP (Completed: August 2004)
- Red Hat Enterprise Linux 4 EAL 4+/CAPP (Completed: February 2006)
- Red Hat Enterprise Linux 5 EAL4+/CAPP/LSPP/RBAC (Completed: June 2007)

DII-COE

edhat.

- Red Hat Enterprise Linux 3 (Self-Certification Completed: October 2004)
- Red Hat Enterprise Linux: First Linux platform certified by DISA

DCID 6/3

- Currently PL3/PL4: ask about kickstarts.
- Often a component in PL5 systems

DISA SRRs / STIGs

Ask about kickstarts.

FIPS 140-2

Red Hat / NSS Cryptography Libraries certified Level 2

Se redhat.

Security Standards Work

Extensible Configuration Checklist Description Format (XCCDF)

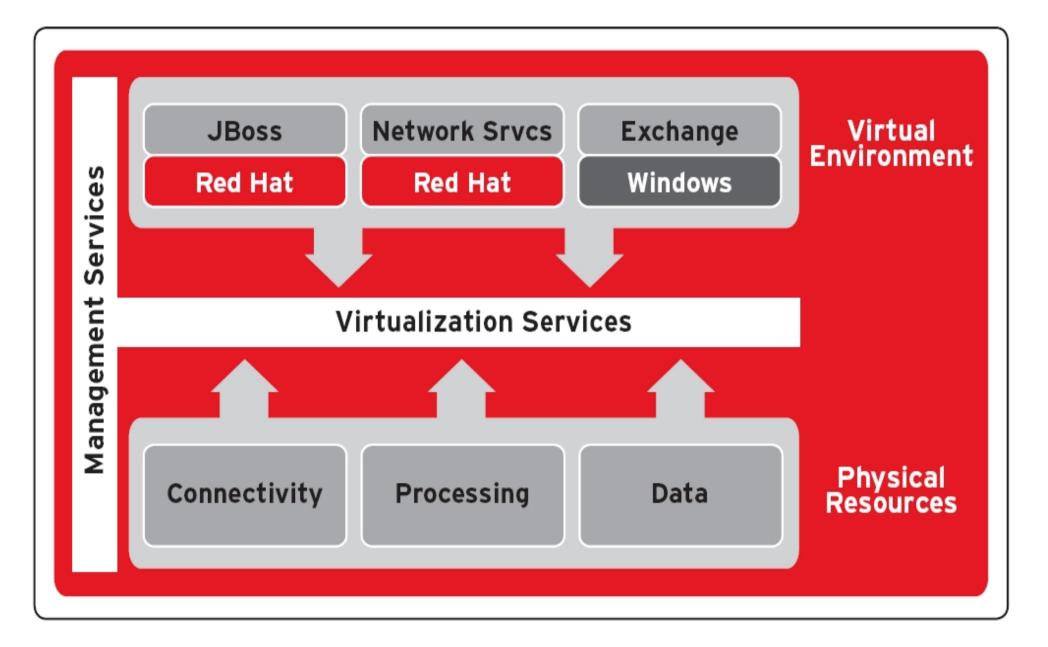
- Enumeration for configuration requirements
- DISA FSO committed to deploying STIG as XCCDF
- Others working with NIST
- Security policy becomes one file

Open Vulnerability & Assessment Language (OVAL)

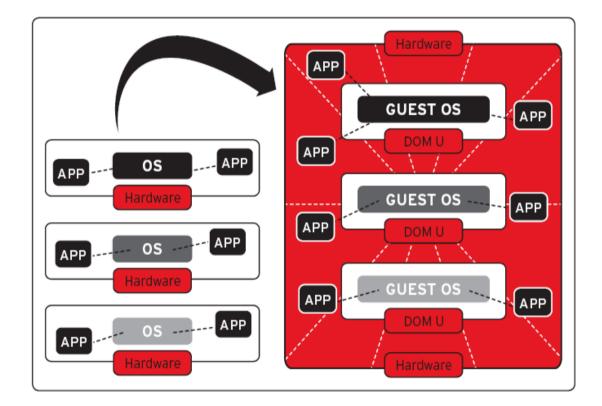
Machine-readable versions of security advisories

Common Vulnerability and Exposures (CVE) Compatibility

Trace a vulnerability through multiple vendors

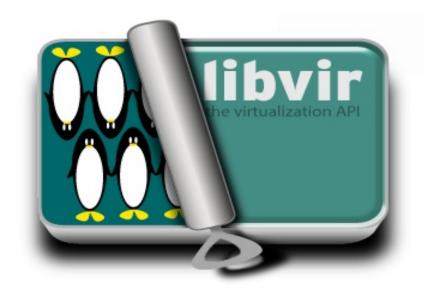

Questions?

Red Hat Emerging Technologies



The Xen Hypervisor

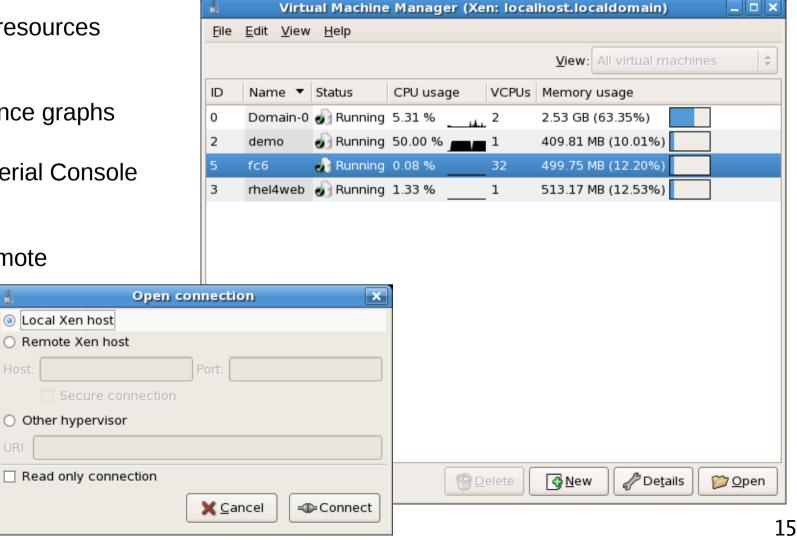
- Flexible IT Services
- Disaster Tolerance
- Life Cycle Management
- Live Migration



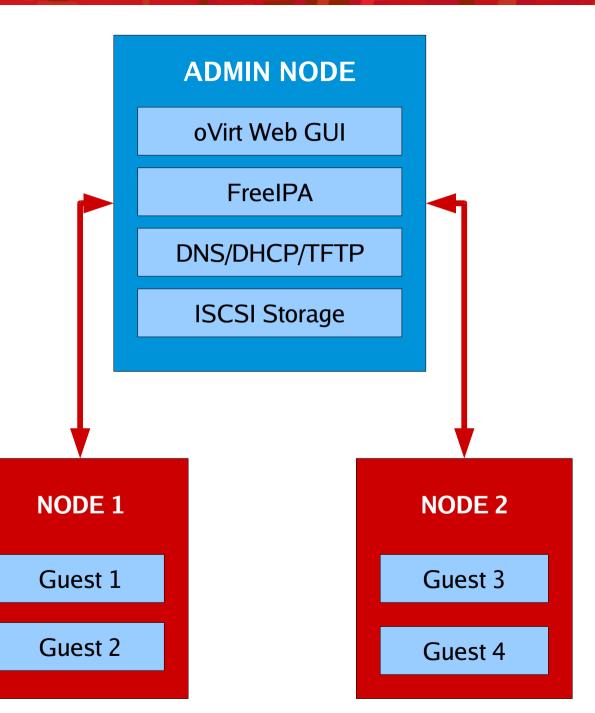
Introduction to libvirt API

Hypervisor agnostic

redhat.


- Stable API for tool/app development
 - CIM providers; Python, C bindings, scriptable
- Allows authenticated/encrypted sessions to remote hypervisors
- Current support for
 - Xen Hypervisor
 - KVM Hypervisor
 - QEMU Hypervisor

Introduction to virt-manager


- Graphical virtual guest management
- Add/Remove resources dynamically
- Live performance graphs
- **Graphical & Serial Console** Emulation
- Connect to remote hosts

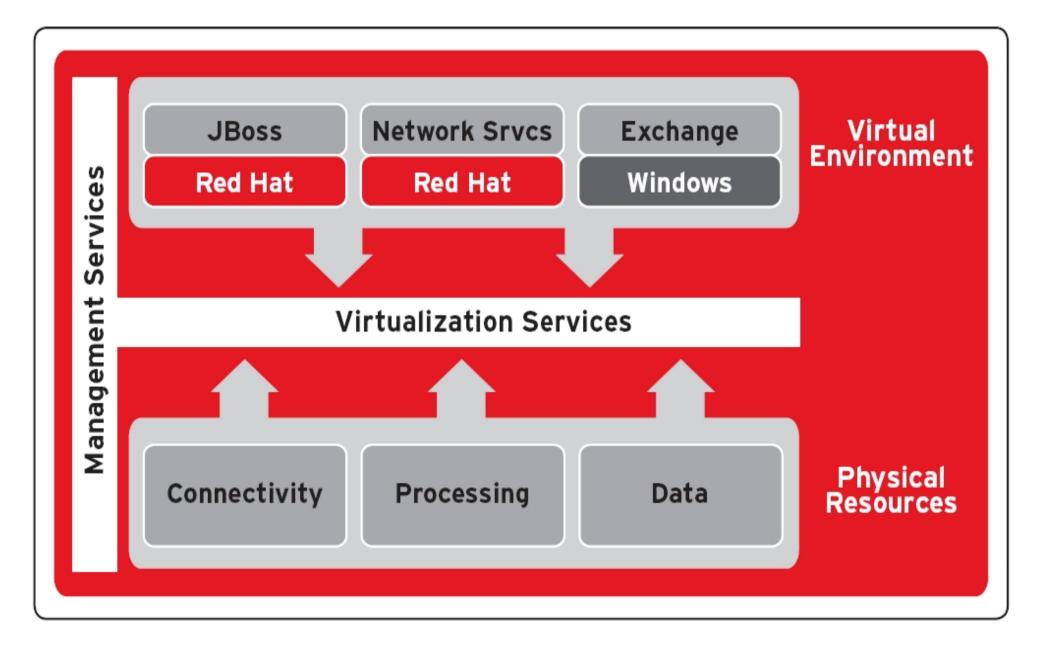
Introduction to oVirt

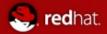
- Currently <u>in development</u>
- Utilizes libvirt
- Web-Based GUI
- Automate clustering, load balancing, and SLA maintenance
- Designed for enterprise management
- Built on Ruby on Rails
- Performance tools built-in

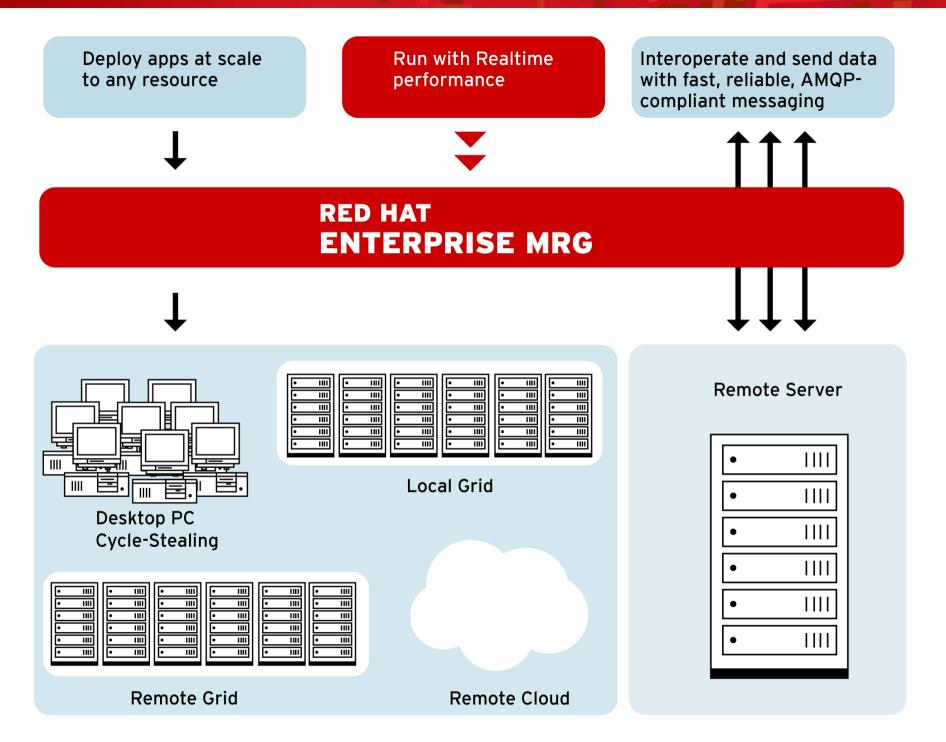
Available Storage

Statistics Data

ip : port type LUN target size (gigs)


1.2.3.4:9876 iSCSI abcd target1 10


Available Hosts


Statistics Data

host & uuid	CPUs	speed (Mhz)	arch	RAM (gigs)	Disabled?
host1.qa.ovirt.org host1.qa.ovirt.org	4	3000	x86_64	1988	No
host2.qa.ovirt.org host2.qa.ovirt.org	4	3000	x86_64	1988	No
host1.lab.ovirt.org host1.lab.ovirt.org	2	2400	x86_64	1988	No
host2.lab.ovirt.org host2.lab.ovirt.org	2	2000	x86_64	1988	No
host3.lab.ovirt.org host3.lab.ovirt.org	4	3000	x86_64	1988	No
host4.lab.ovirt.org host4.lab.ovirt.org	4	3000	x86_64	1988	No
qa1.lab.ovirt.org qa1.lab.ovirt.org	4	3000	x86_64	1988	No
qa2.lab.ovirt.org qa2.lab.ovirt.org	4	3000	x86_64	1988	No
qa3.lab.ovirt.org qa3.lab.ovirt.org	4	3000	x86_64	1988	No

MRG: Messaging

redhat.

- Provides messaging that is up to 100-fold faster than before
- Spans fast messaging, reliable messaging, large-file messaging
- Implements AMQP, the industry's first open messaging standard, for unprecedented interoperability that is cross-language, cross-platform, multivendor, spans hardware and software, and extends down to the wire level
- Uses Linux-specific optimizations to achieve optimal performance on Red Hat Enterprise Linux and MRG Realtime
 - Takes advantage of RHEL clustering, IO, kernel, and more
 - Includes new high-performance AIO Journal for durable messaging
 - Provides native infiniband support for transient messaging

About AMQP

edhat.

- AMQP is an open specification for messaging
 - It is a complete specification
 - Anyone may use the AMQP specification to create useful implementations without being charged for the IP rights to do so
- AMQP aims to be technology and language-neutral
 - Available in C, C++, Java, JMS, .NET, C#, Ruby, Python, etc.
 - Requires IP, and can be used with TCP, UDP, SCTP, Infiniband, etc.
- Products complying with AMQP are inter-operable
 - AMQP is a Wire-Level protocol based on the ubiquitous IP
 - Wire-level compatibility means it can be embedded in the network
 - Applications written to Product X will plug into servers running Product Y
- Red Hat is a founding member of the AMQP Working Group

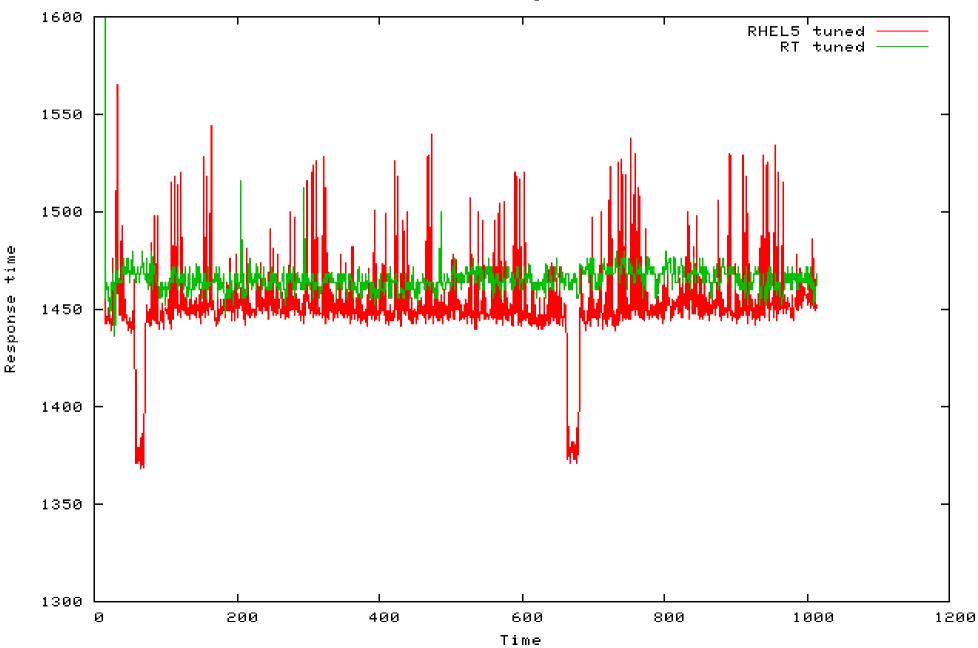
MRG Realtime

Determinism

Ability to schedule high priority tasks predictably and consistently

Priority

Ensure that highest priority applications are not blocked by low priority


Quality Of Service (QoS)

Trustworthy, consistent response times

Proven results

- Average of 38% improvement over stock RHEL5
- Timer event precision enhanced to µs level, rather than ms

Tibco Messages/usec

MR<u>G</u>: Grid

- Brings advantages of scale-out and flexible deployment to any application
- Delivers better asset utilization, allowing applications to to take advantage of all available computing resources
- Dynamically provisions additional peak capacity for "Christmas Rush"-like situations
- Executes across multiple platforms and in virtual machines
- Provides seamless and flexible High Throughput Computing (HTC) and High Performance Computing (HPC) across
 - Local grids
 - Remote grids
 - Remote clouds (Amazon EC2)
 - Cycle-stealing from desktop PCs

Project

- Open Source
- www.freeipa.org
- Started and contributed to by Red Hat
- Open to all
- IPA = Identity, Policy, Audit

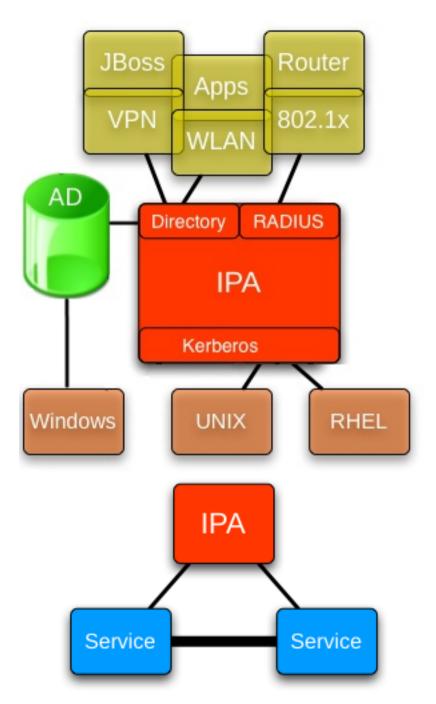
- Big vision
 - Start with centralized user identity management for UNIX/Linux
 - Add robust, shared sense of machine, service and data identity
 - Provide centrally managed admin access control for UNIX/Linux
 - Give ability to externalize policy and add to it easily
 - Add centralized audit
 - With this you can enable flexible cross-enterprise policy and rational audit

IPAv1 (February target) will provide

Single Sign on for users

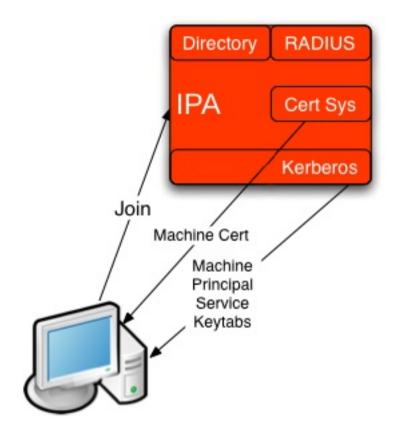
- Tie together Directory and Kerberos
- User Kerberos ticket for SS) to UNIX/Linux, JBoss, other apps

Centralized authentication point for IT


- Unite Directory, Kerberos, RADIUS servers, SAMBA
- From Apps, UNIX/Linux, VPNs, WLANs


Easy for IT to set up, migrate to, and manage

- Simple IPA install
- Intuitive web interface, Command line
- Tools migrate from NIS


Key Data replicated via Directory

Process identity via a Kerberos principal

IPAv2 (July target) will provide

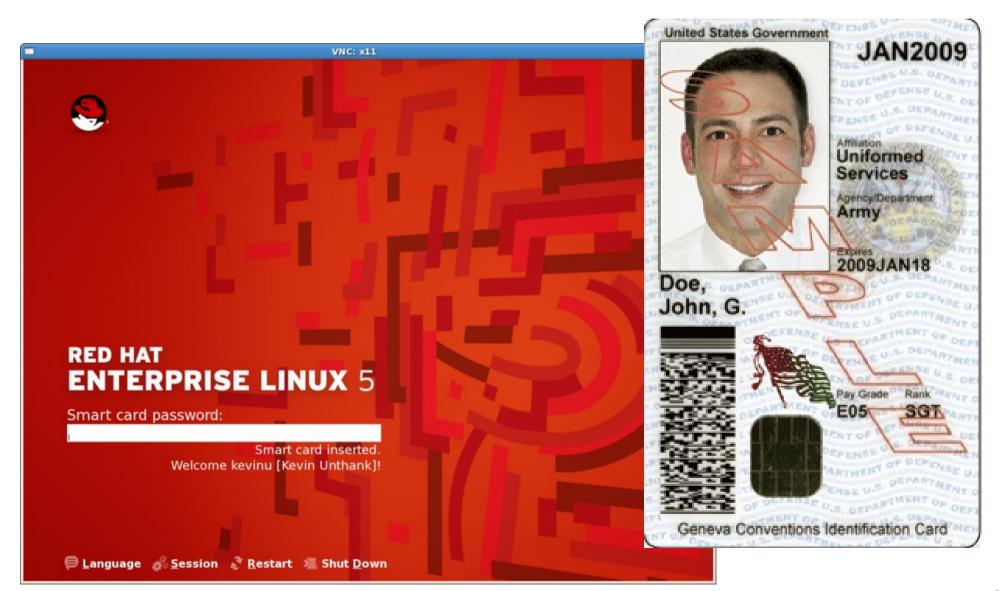
Identify and group machines, Vms, services

Simplified service authentication and establishment of secure communication

- Machine identity via Kerberos, certificate
- Process identity via Kerberos principal

Management of machine certificate

Centrally managed access control

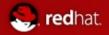

- Extensible policy framework
- Set policy of which users can access which apps on which machines
- Centrally managed scoped admin control

Central audit database

• Centrally audit security event, logs, keystrokes (?), compliance with lockdown

RHEL5 Security: Smart Card Support

Questions?


SELinux

A Wonderland of Obscure Subsystems

Access Control Mechanisms (ACMs)

- Control which users and processes can access different files, devices, interfaces, etc., in a computer system.
- This is a primary consideration when securing a computer system or network of any size.
 - Discretionary Access Control (DAC)
 - Access Control Lists (ACLs)
 - SELinux
 - Mandatory Access Control (MAC)
 - Role-Based Access Control (RBAC)
 - Multi-Level Security (MLS)

Discretionary Access Controls (DAC)

- Basic access controls for objects in a filesystem
- Typical access control provided by file permissions, sharing, etc
- Access is generally at the discretion of the owner of the object (file, directory, device, etc.).

Is -L /demos/Harris/

Access Control Lists (ACLs)

- Evolution of DAC
- Delegate access decisions to specific user/groups/subsets
- -rw-rw-r--+

redhat.

sudo -u hr_worker cat HR_PayrollData
setfacl -m u:hr_worker:r HR_PayrollData
sudo -u hr_worker cat HR_PayrollData

SELinux Basics: Goals

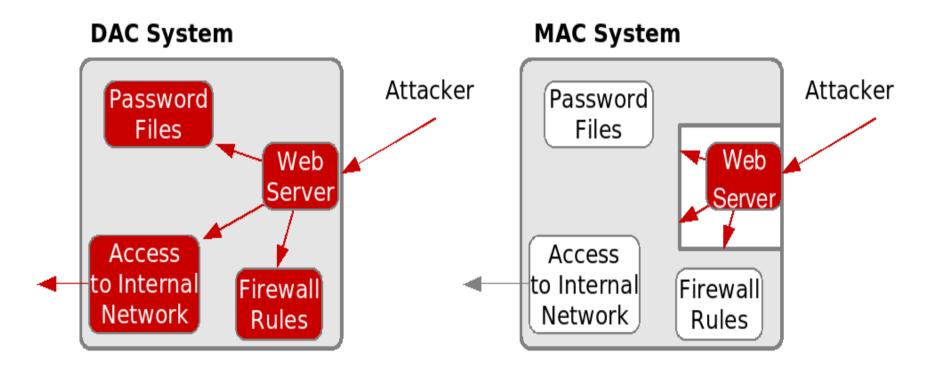
Systems Must Be Tamperproof

There must be no way for attackers or others on the system to intentionally or accidentally disable it or otherwise interfere with its operation

Systems Must Be Nonbypassable

There must be no way to gain access to system resources except through mechanisms that use the reference monitor to make access control decisions

Access Must Be Verifiable

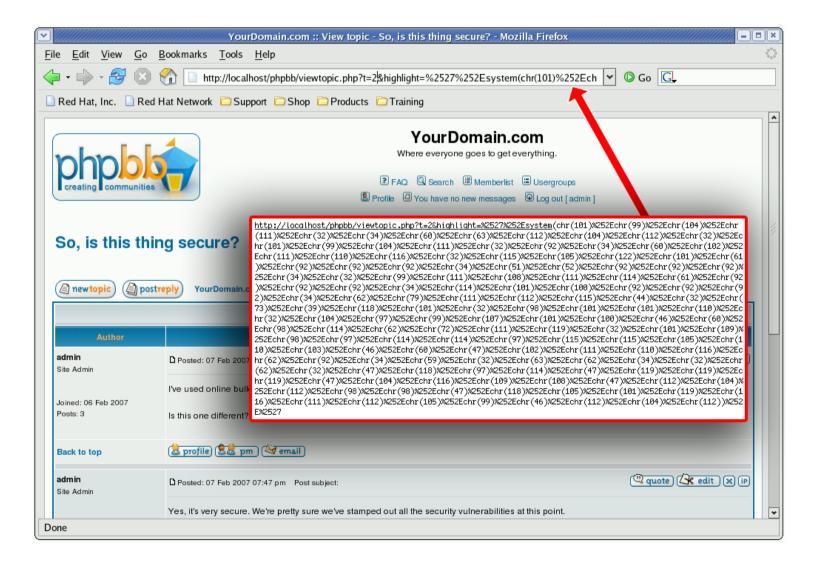

There must be a way to convince third-party evaluators (i.e. Auditors) that the system will always enforce MLS correctly

No Covert Channels

Eliminate footprints of other processes on the system (process threads, resource utilization, disk activities, etc)



SELinux Basics: MAC vs DAC



 DAC does not clearly separate the privileges of users and applications action on the users behalf, increasing the damage that can be caused by application exploits.

Recent SELinux Examples

Recent SELinux Examples

Recent SELinux Examples

The Result

Using SELinux...

- Apache should not be allowed to overwrite content
 - Therefore, Apache and any program started by Apache is not given write access to the data
 - SELinux constrains the program, regardless of the user running executable
 - The content is protected, even if the Apache PHP/CGI user owns the files
- When attacker uses the same exploit, with SELinux turned on:

Mar 3 23:02:04 rhel4-u4-as kernel: audit(1170820924.171:108):
 avc: denied { write } for pid=26760 comm="sh"
 name="phpbb" dev=dm-0 ino=1114119
 scontext=root:system_r:httpd_sys_script_t
 tcontext=root:object_r:httpd_sys_content_t tclass=dir

Key Points

- The attack would have been prevented simply by turning SELinux on, without any further configuration!
- SELinux implements comprehensive control over all resources, including files, directories, devices, sockets, networking, IPC, etc.
- SELinux and Linux DAC are orthogonal (both security checks must pass)

SELinux Basics: RHEL5 Improvements

Expanded SELinux targeted policy coverage

edhat.

- Provides coverage for all core system services, versus 11 in Red Hat Enterprise Linux 4
- Includes support for Multi Level Security (MLS) enforcement model
 - In addition to existing RBAC and TE models

An additional level of protection against security exploits

- Fine-grained policies via kernel-enforced mandatory access controls
- Limits the scope of security vulnerabilities
- Beyond what any other general-purpose OS can deliver

SELinux Basics: RHEL5 Improvements, Cont

Loadable Policy Modules

redhat.

- In the past, all policy changes had to be made to the policy source
 - Required the entire policy re-compiled
 - Requiring a full set of policy development tools on production systems.
- Modules allow for the creation of self-contained policy modules
 - Safely linked together to create system policies
 - Add policy on the fly
 - Remove policy on the fly
- Framework to allow ISV/OEM partners to ship their own modular SELinux policy

Further Information

 http://sepolicy-server.sourceforge.net/index.php?page=moduleoverview

SELinux Basics: RHEL5 Improvements, Cont

ExecShield

redhat.

- Prevent any memory that was writable from becoming executable.
- Prevents an attacker fromwriting his code into memory and then executing it

Stack Smashing protection (Canary values)

- Places a canary value at a randomized point above the stack.
 - This canary value is verified during normal operation.
 - If the stack has been smashed, the canary value will have been overwritten, indicating that the stack has been smashed.
- This is a method to detect buffer overflows early.

FORTIFY_SOURCE GCC option

- Compiler knows the size of a buffer
- Functions operate on the buffer to make sure it will not overflow at runtime.
- This works to help catch format string flaws as well as buffer overflows.

Unconfined Memory

redhat.

- Unconfined is a domain that was added to SELinux specifically to allow applications in this domain to run as if they were not running on an SELinux system
- With RHEL5, memory protections have been added to the unconfined domain.

SELinux Compatible Applications

- SELinux can control all Linux applications.
- Since policy dictates how processes will access domains, all one needs to do is construct a policy for their application.
- Once the policy is constructed, it can be loaded, tested, and distributed with the application.

SELinux Basics: Policy Types

Targeted Policy (Default)

Applications run unconfined unless explicitly defined policy exists

Strict Policy

All application actions explicitly allowed through SELinux, else actions denied

MLS

- Polyinstantiated file systems
- Allows for different "views" based on clearance level

SELinux: Exploring Contexts

- All objects have a security context
 - user:role:type[:sensitivity:category]
 - Stored as extended attribute on the inode

User

- Strict: audit_u, admin_u, etc.
- Targeted: root, system_u, user_u

Role

• Targeted: files are object_r, processes are system_r

Туре

- Type v. domain: httpd_exec_t v. httpd_t
- Sensitivity: s0-s15, aka "SystemLow-SystemHigh"
- Category: c0-c1023
 - Set math!

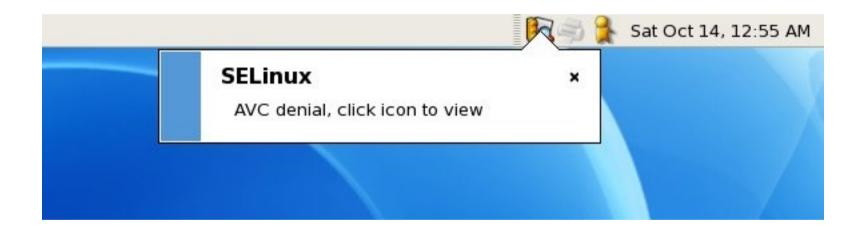
SELinux: Exploring Contexts

ps -axZ

Notice context of ntpd, versus bash

Is -Z /home

Notice context of ntpd, versus bash


Apache Example

SELinux: End-User View

sealert Notification

SELinux: End-User View

sealert Browser

*	🔆 setroubleshoot browser 🔤 🗗 🗙									
<u>F</u> ile	<u>V</u> iew <u>E</u> dit <u>H</u> elp									
Filter	Date 🔺	Count Category	Summary							
	Mon Dec 4 2006 9:31 AM	23 Unknown	SELinux is preventing /usr/sbin/sendmail.sendmail (system_mail_t) "getattr" to /root (user_h							
	Mon Dec 4 2006 9:31 AM	16 Unknown	SELinux is preventing /usr/sbin/sendmail.sendmail (system_mail_t) "search" to							
	Mon Dec 4 2006 8:26 AM	55 Unknown	SELinux is preventing /usr/sbin/gpm (gpm_t) "getattr" access to /etc/localtime							
	Mon Dec 4 2006 8:26 AM	55 Unknown	SELinux is preventing /usr/sbin/gpm (gpm_t) "read" access to localtime (etc_t							
	Mon Dec 4 2006 8:25 AM	60 Unknown	SELinux is preventing /sbin/mcstransd (setrans_t) "getattr" access to /etc/loc							
	Mon Dec 4 2006 8:25 AM	55 Unknown	SELinux is preventing /sbin/mcstransd (setrans_t) "read" access to localtime							
	Fri Nov 24 2006 10:31 AM	12 Unknown	SELinux is preventing /usr/sbin/xenstored (xenstored_t) "read" to localtime («							
	Fri Nov 24 2006 10:31 AM	14 Unknown	SELinux is preventing /usr/sbin/xenstored (xenstored_t) "getattr" to /etc/local							
٩		III								

Summary

SELinux is preventing /usr/sbin/sendmail.sendmail (system_mail_t) "getattr" to /root (user_home_dir_t).

Detailed Description

SELinux denied access requested by /usr/sbin/sendmail.sendmail. It is not expected that this access is required by /usr/sbin/sendmail.sendmail and this access may signal an intrusion attempt. It is also possible that the specific version or configuration of the application is causing it to require additional access.

Allowing Access

Sometimes labeling problems can cause SELinux denials. You could try to restore the default system file context for /root, restorecon -v /root if this does not work, there is currently no automatic way to allow this access. Instead, you can generate a local policy module to allow this access - see <u>FAQ</u> Or you can disable SELinux protection altogether. Disabling SELinux protection is not recommended. Please file a <u>bug report</u> against this package. Additional Information

sealert Browser

*	setroubleshoot browser 🔤 🗗 🗙									
<u>File View Edit H</u> elp										
Filter	Date 🔺	Count Category	Summary							
	Mon Dec 4 2006 9:31 AM	23 Unknown	SELinux is preventing /usr/sbin/sendmail.sendmail (system_mail_t) "getattr" to /root (user_h							
	Mon Dec 4 2006 9:31 AM	16 Unknown	SELinux is preventing /usr/sbin/sendmail.sendmail (system_mail_t) "search" to							
	Mon Dec 4 2006 8:26 AM	55 Unknown	SELinux is preventing /usr/sbin/gpm (gpm_t) "getattr" access to /etc/localtime							
	Mon Dec 4 2006 8:26 AM	55 Unknown	SELinux is preventing /usr/sbin/gpm (gpm_t) "read" access to localtime (etc_t							
	Mon Dec 4 2006 8:25 AM	60 Unknown	SELinux is preventing /sbin/mcstransd (setrans_t) "getattr" access to /etc/loc							
	Mon Dec 4 2006 8:25 AM	55 Unknown	SELinux is preventing /sbin/mcstransd (setrans_t) "read" access to localtime							
	Fri Nov 24 2006 10:31 AM	12 Unknown	SELinux is preventing /usr/sbin/xenstored (xenstored_t) "read" to localtime (e							
	Fri Nov 24 2006 10:31 AM	14 Unknown	SELinux is preventing /usr/sbin/xenstored (xenstored_t) "getattr" to /etc/local							

Summary

redhat.

SELinux is preventing /usr/sbin/sendmail.sendmail (system_mail_t) "getattr" to /root (user_home_dir_t). Detailed Description

SELinux denied access requested by /usr/sbin/sendmail.sendmail. It is not expected that this access is required by /usr/sbin/sendmail.sendmail and this access may signal an intrusion attempt. It is also possible that the specific version or configuration of the application is causing it to require additional access.

Allowing Access

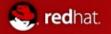
Sometimes labeling problems can cause SELinux denials. You could try to restore the default system file context for /root, restorecon -v /root lf this does not work, there is currently no automatic way to allow this access. Instead, you can generate a local policy module to allow this access - see <u>FAQ</u> Or you can disable SELinux protection altogether. Disabling SELinux protection is not recommended. Please file a <u>bug report</u> against this package. Additional Information

Source Context:	system_u:system_r:system_mail_t
Target Context:	root:object_r:user_home_dir_t
Target Objects:	/root [dir]
Affected RPM Packages:	
Policy RPM:	
Selinux Enabled:	
Policy Type:	
MLS Enabled	
=1 file: audit	

R.				SELinux Administration	<u><</u>					
<u>F</u> ile <u>H</u> elp										
Select: Status		Filter								
Boolean	ı	Þ		Admin						
File Lab	eling	▽		Compatibility						
User Ma	apping			Allow sysadm_t to debug or ptrace applications)						
SELinux	User	⊳		Cron						
Translat	ion	⊳		CVS						
Network	< Port	~		Databases						
Policy M	lodule			Allow user to connect to mysql socket						
				Disable SELinux protection for mysqld daemon						
				Disable SELinux protection for postgresql daemon						
		⊳		FTP						
		∇		Games						
				Disable SELinux protection for games						
		⊳		HTTPD Service						
		⊳		Kerberos						
		⊳		Memory Protection	_					
		► I I I		·· ·						

Using audit2allow & semanage

- You are experiencing SELinux errors
- You know that these errors are blocking legitimate usage


Be aware that changes to your SELinux policy could compromise the security of your system.

- Red Hat gives employees a "Corporate Standard Build"
 - Customized RHEL Desktop
 - Includes VPN Configuration
- VPN Broke in last update! time->Wed Mar 5 07:22:55 2008

type=SYSCALL msg=audit(1204719775.306:738): arch=40000003 syscall=54 success=no exit=-19 a0=4 a1=8933 a2=bfcec1bc a3=bfcec1bc items=0 ppid=3900 pid=5003 auid=501 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) comm="ip" exe="/sbin/ip" subj=user_u:system_r:ifconfig_t:s0 key=(null)

type=AVC msg=audit(1204719775.306:738): avc: denied { sys_module } for pid=5003 comm="ip" capability=16 scontext=user_u:system_r:ifconfig_t:s0 tcontext=user_u:system_r:ifconfig_t:s0 tclass=capability

<snip>

•••••

.

comm="ip" exe="/sbin/ip" subj=user_u:system_r:ifconfig_t:s0 key=(null)
type=AVC msg=audit(1204719775.306:738): avc: denied { sys_module } for pid=5003
comm="ip" capability=16 scontext=user_u:system_r:ifconfig_t:s0
tcontext=user_u:system_r:ifconfig_t:s0 tclass=capability

</snip>

ausearch -x "/sbin/ip" | audit2allow -M myVPNfix
semodule -i myVPNfix

SELinux: Auditor View

Centralized Logging is a must!

aureport

aureport –summary

ausearch

• # ausearch -ul swells

aide

- Intrusion Detection program
- Ships with RHEL5

yum install aide
aide –init
chmod 777 /etc/hosts
aide - -check

AIDE found differences between database and filesystem!! Changed files: changed:/etc/hosts Detailed information about changes:

File: /etc/hosts Permissions: -rw-r--r-- , -rwxrwxrwx

aide v auditd

- auditd built into RHEL
- Used in Common Criteria, DCID, STIG compliance

-a exit,possible -S chmod -F arch=\${ARCH} -F success=0 -F success!=0

-a exit, always -S open -S pipe -S mkdir -S creat -F arch=\${ARCH} -F success=0

-a exit, always -S rename -F arch=\${ARCH} -F success!=0