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● About me

– PHP 5.3 Certified

– Work at Zend Technologies

– Organizer SoFloPHP (South Florida)

– Organized SunshinePHP (Miami)

– Long distance runner

– Judo Black Belt Instructor
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● Fan of iteration

– Everything requires iteration to do well: (practice makes perfect)

● Long distance running
● Judo
● Development
● Avoid project managers
● Version Control!
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● Why use Git?

– No centralization

● No central server (unless desired)

– Each clone = full repository

● Git tracks state, history, and integrity

– Branching and Merging work

– Fast

● Local vs Remote
● Only one .git directory

– Files to be committed are “staged” first

– Free and Open Source

– Flexible workflow
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● How Others Looks At Data.

– As files and the changes made to each file.

Version 1 Version 2 Version 3 Version 4 Version 5

File A

File B

File C

Diff 1

Diff 1

Diff 2

Diff 1

Diff 2

Diff 2

Diff 3
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● How Git Looks At Data.

– As whole files, not files + diffs.

Version 1 Version 2 Version 3 Version 4 Version 5

File A

File B

File C

File A1 File A2

File B1 File B2

File C1 File C2 File C3

File A1 File A2

File BFile B

File C2

Green means whole file, yellow means pointer to previous whole file.
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● Subversion-Style Workflow

Shared Repository

Developer Developer Developer
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● Integration Manager Workflow

Blessed
Repository

Integration
Manager

Developer
Public

Developer
Public

Developer
Private

Developer
Private
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● Dictator and Lieutenants Workflow

Blessed
RepositoryDictator

Developer Developer Developer Developer

Lieutenant

Lieutenant
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● Single Developer

– One repository, everything in one basket.

● Remember to backup

Developer
Local

Repository
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● Each 'git clone' == full repository
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● What is actually going on?

– A bunch of repositories!

Repository

Repository Repository Repository
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● But it could be:

– Repositories can connect in all directions.

Repository

Repository

Repository

Repository
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● Most common commands

– git config

– git init

– git clone

– git status

– git add

– git commit

– git log or show

– git branch

– git checkout

– git merge

– git pull or push
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● Help!

– Adding '-h' to any command will return help on usage.
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● git config

– Easily set your information to accompany commits.

– Generally a one time thing.
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● git init

– Instruct Git to track project by simply 'git init'.

– No more excuses! Version all the things!
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● git clone {repo} {destination}

– Creates new repository based on another.

– Cloned repository becomes “Origin”.

● Internal pointer for where it came from.
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● Example of 'git clone'

– Below we clone a repo from github.

– We address the .git directory.

– Specify where to put it.
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● git status

– Provides status of resources in the tracked project.
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● git status

– Below 'git status' informs us of untracked files after created.
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● git add

– Stages files to be committed.
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● git commit

– A 'git commit' includes all “staged” files.

– Use '-m' to store a message with the commit.

● Or git prompts user to add a message. (using default editor)
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● More on commits

– A commit should be:

● Done OFTEN!
● Commit messages

– Always included
– Short
– Informative

● Single commit per bug or ticket.
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● git log

– Shows history of prior commits.

– We've only done one, and here it is:
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● git show {commit hash}

– Hash optional, will show previous by default.

– Shows commit + diff view of files.
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● What would a commit do?

– We did a 'git add' for file #2, and modified file 1.
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● And now?

– We did a 'git add' for modified file 1.
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● And finally?

– We did a 'git add' for new file 3.
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● After the commit.

– All staged files were added.

– A 'git status' reveals nothing new or different.
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● Commits do not carry a version #

– Git doesn't use numbers like 1, 2, 3...

– Instead uses hashes like 6e7e6999c879f460b5e1d7e29ffe9907062ec20a



32

Essential Git For Developers

● Working in 'master' is bad.

– Should not be working in the 'master' branch.

– 'master' should be pristine version.

● Most bug free.
● Tested
● Same as “Production”
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● git branch

– Shows a list of existing branches.

– The * indicates active branch.
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● git branch {name} {branch}

● Or git checkout -b {name} {branch}

– Creates new branch.

– Checkout -b checks out after creation.

– Below we create a 'development' branch.

– New branch has same state as active/specified branch.
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● git checkout {name}

– Include “-b” flag to create new branch.

– Switches to a specified branch.

– Branches carry own state.

– In file browser file contents different.
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● What if?

– A file has been edited, but not committed.

– We are in 'development' branch.

– What if we 'git checkout master'?
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● Change branch with uncommitted files

– Merges uncommitted content on checkout.

● Whether 'staged' or not.

– Does NOT merge over newly created files. (changes only)

– Conflicts get exciting. (Not covered in this talk.)
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● File not actually changed

– On 'git checkout development' and commit:

● File in development carries edit committed.
● File in master is reset, even though merged previously.

master development
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● But if commit done first

– Commit only done on active branch.

– Master branch is unchanged. ('git log' shown below)

– Master files do not contain merged changes.

master development
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● git merge {branch}

– Git merges specified branch into active branch.

– We merge change from development to master.

● 'git checkout master'
● 'git merge development'
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● What are “fast forward” commits?

– Merges individual commits into flow as if a checkout never occurred.
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● Ignoring

– We can exclude:

● Files
● Folders
● Config files with passwords ! ! !

– Simply add excluded content to the file '.gitignore'.
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● Typical branches for teams

– Conventions:

● Testing, Staging and Master branches off limits but public.
● Development public, public to all.
● {user}-development branches local and private.
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● Typical rules for branch usage

– No code leaves {user}-development unless finished and stable.

● Developers merge to development branch...period!

– Do NOT merge conflicts into any public branch.
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● Commit procedure (origin pull/merge/push)

– Before merging changes to public development:

● 'git checkout development'
● 'git pull origin development'

– Should be no conflicts.
● 'git checkout {user}-development'
● 'git merge development'

– Fix conflicts
● 'git checkout development'
● 'git merge {user}-development'
● 'git push origin development'
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● Public and Private branches

– Typically {user}-development branches remain private.

● The team is not aware of commits done there.
● Frequent commits encouraged.

– Development, Staging, and Master are public and entire team can view 
state/commits.

● All developers can merge to development.
● Only authorized people can merge to staging or master.
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● Team Developer workflow

– Git is ideal for team development
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● Team Developer workflow (private)

– Project/ticket assigned, create branch

● 'git checkout development'
● 'git branch {user}-development' or 'git checkout -b {user}-development'

– Start coding.

– Commit often.

Checkout dev.
to private

{user}-development

Project
assigned
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● Team Developer workflow (private)

– Regularly commit code.

● 'git add {filename}' X each file
● 'git commit -m {commit message}'

– Regularly pull from origin.

● 'git checkout development' followed by 'git pull origin development'
● 'git checkout {user}-development' followed by 'git merge development'

Checkout dev.
to private

{user}-development

Multiple
commits

CodingProject
assigned
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● Team Developer workflow (private)

– Development completed, ready for QA testing.

● 'git checkout development'
● 'git pull origin development' should be no conflicts.
● 'git merge {user}-development' should be no conflicts.

Checkout dev.
to private

{user}-development

Merge changes
to development

Multiple
commits

Coding

Tests
pass

Project
assigned
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● Team QA workflow (public)

– Testing done in development branch.

– Failed  developer picks up on {user}-development.→

– Bug fixed  re-push to development.→

Testing from
development

Test
passed

Testing
assigned

no

Return to
developer flow
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● Team QA workflow (public)

– Testing done in development branch.

– Success  merge to staging→

● 'git checkout staging'
● 'git pull origin staging'
● 'git merge development'
● 'git push origin staging'

Testing from
development

Merge to
staging

Test
passed

Testing
assigned

yes

no

Return to
developer flow
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● Team Deployment Mgr. workflow (public)

– Regression testing done in staging branch.

– Testing failed:

● 'git branch -b {tempname}-staging'

– Code to fix bug

● 'git add {files}'
● 'git commit -m {message}'

Regression testing
In staging

Test
passed

Deploy
assigned

no

Temp branch
created
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● Team Deployment Mgr. workflow (public)

– Send fix back for regression testing done in staging branch.

● 'git merge staging' just to check for conflicts.
● 'git checkout staging'
● 'git merge {tempname}-staging'

Regression testing
In staging

Test
passed

Deploy
assigned

no

Temp branch
created

Bug
fixed
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● Team Deployment Mgr. workflow (public)

– If regression tests pass:

● 'git merge master' in case of conflicts
● 'git checkout master' then 'git pull origin master'
● 'git merge staging'

Regression testing
In staging

Merge to
master

Test
passed

Deploy
assigned

yes

no

Temp branch
created

Bug
fixed
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● Team Deployment Mgr. workflow (public)

– All is good, create annotated tag.

● 'git tag -a v1.0 -m '{message}' (Note: 'git tag' lists all tags.)

Regression testing
In staging

Merge to
master

Test
passed

Deploy
assigned

yes

no

Temp branch
created

Bug
fixed

Tag
created
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● Single Developer workflow (small project)

– Pretty similar, but no staging.

– Note: Still use {user}-development per task/project/ticket.

{user}-development Merge to
development

Test
passed

Project
assigned

Tag
created

Test
passed

Merge to
master
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● Tools

– gitk

– gitx

– git-cola

– SmartGit

– GitEye

– TortoiseGit

– IDE

● Eclipse

– Zend Studio
– Aptana

● PHPStorm
● etc.
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● github.com

– Great place to share code.

– Promotes collaboration

– API enhances connectivity and use

– Awesome plugins

– Easy to use
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● github – how to clone locally

– Standard 'git clone' command

– Now have a clone local to work on.

– Follow workflow as shown earlier.



61

Essential Git For Developers

● Conclusion

– Always use source control!!!

– Git is an easy solution, just 'git init'.

– Plan a workflow and stick with it...ALWAYS!

– 3rd party repositories = backed up

– Git easy to connect to from anywhere.

– Love iteration!
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● Resources

– http://nvie.com/posts/a-successful-git-branching-model/

– http://github.com

– http://training.github.com/

– https://bitbucket.org/

– http://git-scm.com
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● Thank you!

Adam Culp

http://www.geekyboy.com

http://RunGeekRadio.com 

Twitter @adamculp

https://joind.in/14744

Questions?

http://www.geekyboy.com/
http://RunGeekRadio.com/
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