Deep Dive Android

Agenda

 Introduction to Android
* Application Architecture
* Pentesting Android

* Pentesting with Android

Trainer Profile

Name: Anant Shrivastava

Profession: Information Security Consultant.
Certifications: RHCE, CEH, SANS-GWAPT
Speaker / Trainer: Nullcon, ClubHack, cOcOn
Membership: Null and Garage4Hackers
Website: hitp://anantshri.info

My Work : hitp://anantshri.info/work/
Whitepapers: http://anantshri.info/articles/

Android:
https://play.google.com/store/apps/developer?id=Anantshri

Email : anant@anantshri.info

http://anantshri.info/
http://anantshri.info/work/
http://anantshri.info/articles/
https://play.google.com/store/apps/developer?id=Anantshri

Agenda

* |ntroduction to Android

— QOperating System Overview
- File system Overview
- Security Model

USP : Android

* 56% Smartphone marketshare — Gartner May12
* Sources Available free of cost

* Minimal license cost for developers (25USD).

* Easy to setup development environment.

* Based on Linux

* App-stores filled with large number of apps.

* By 2014, mobile internet to take over desktop
internet usage (Source: Microsoft Tag, 2012)

History : Android

* Android Inc. founded in 2003 in Palo Alto, California by Andy Rubin,
Rich Miner, Nick Sears and Chris White.

* Acquired in August 2005 by Google Inc. Key employees retained.

* Design continued on a Linux powered mobile device. Marketed by
Google to carriers as a flexible and easily upgradable OS.

« On November 5, 2007, a consortium of mobile operators, software
companies commercialization companies, semiconductor
companies and handset manufacturers formed the Open Handset
Consortium, with the stated aim of developing open standards for
mobile devices.

* On the same day, they released their first product Android.

Operating System Overview

System Architecture

APPLICATIONS

Contacts Phone

APPLICATION FRAMEWORK

Window Content

Activity Manager Manager Providers

Telepheny Resource Location Metification

R TR Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager Media SQLite Core Libraries

Framework

B \rr “ !Hﬂ

OpenGL | ES FreeType WebKit Machine

SGL S libe

LiNUuX KERMNEL

Display

Flash Memory Binder (IPC)
Driver

Camera Driver A ;
Driver Driver

WiFi Driver Audio Power

Keypad Driver Drivers Management

A software stack for
mobile devices.

Linux-based kernel
(merged back to
mainstream in 3.4)

Middleware, libraries
and APIs in C.

Java-based application
framework.

Custom Dalvik virtual
machine with a JIT Java
compiler.

Applications coded
primarily in Java.

File System Overview

File System

 Block Devices (available as /dev/block/mtdblock*)

Important Partitions
* /system : OS partition (generally RO)
* /data : User-Data (Application Storage)
* /sdcard : SD CARD storage location

* Partition Types
« /system,/data : Yaffs2 Or ext3/ext4
* /sdcard : vfat (till 2.3.3)
* newer nexus devices don’t have separate
/sdcard rather a folder which is mounted as MTP
when connected to desktop

Note : a detailed description of all files and folders is
available here

v
> @9 anr
> @ app
» [app-asec
» @ app-private
» @9 backup
» @ dalvik-cachi
» [data
» @1 dontpanic
» @3 drm
> @ local
» @8 lost+found
» @ misc
» @ nativebenck
* @ nativetest
» @ property
» @8 resource-ca
» @3 ssh
» (@9 system
» @9 user
default.prop

» i dev
v @ system

* @ app

> @ bin
build.prop

> i3 etc

» [fonts

» @8 framework

> @ lib

» @ lost+found

» @ media

> @ tts

» @ usr

» @3 xbin

ueventd.goldi

ueventd.rc

vendor

116

1433

2712

2012-09-21 01:53 drwxrwxrx

2012-07-14: 02:30: drwxrwx--x
2012-09-20: 23:16: drwx------

2012-09-20: 23:16 drwxrwx--x
2012-09-20: 23:17: drwx-———--

2012-09-20° 23:16° drwxrwx--x
2012-09-20: 23:17: drwxrwx--x
2012-09-20° 23:16: drwxrx---

2012-09-20 23:16: drwxrwx---
2012-09-20° 23:16° drwxrx--x
2012-09-20: 23:16: drwxrwx---
2012-09-20: 23:16: drwxrwx--t
2012-07-14 02:26' drwxrwx--x
2012-07-14 02:26° drwxrwx--x
2012-09-21: 01:52: drwx------

2012-09-20: 23:16 drwxrwx--x
2012-09-20 23:16: drwxrx---

2012-09-21° 01:53 drwxrwxr-x
2012-09-20: 23:16: drwx--x--x
1970-01-01: 05:30: -rw-r-r—-

2012-09-21° 01:52° drwxr-xrx
2012-07-14: 02:30° drwxr-xr-x

2012-07-14 02:31 drwxrxrx
2012-07-14: 02:27 drwxr-xr-x
2012-07-14: 02:18 -rw-r--r--

2012-07-14 02:31 drwxrxrx
2012-07-14 02:26° drwxr-Xr-x
2012-07-14: 02:30 drwxrxrx
2012-07-14 02:27: drwxrxrx
2012-09-21 01:52° drw-rw-rw-
2012-07-14 02:21 drwxrxrx
2012-07-14 02:21 drwxrxrx
2012-07-14 02:24 drwxr-xr-x
2012-07-14 02:26: drwxrxrx
1970-01-01: 05:30: -rw-F-I--

3879: 1970-01-01 05:30: -rw-r--I--

2012-09-21 01:52 Irwxrwxrwx

http://anantshri.info/andro/file_system.html

Security Model Overview

Security model

System level
Unix permission based restriction.
SE Linux (4.3 onwards : Permissive mode in 4.3,
enforced in 4.4)

App sandboxing
each application a unique id

Permission Model
Permission need to be taken first time
(AppOps introduced as hidden feature in market and can
be leveraged to fine tune the permission model)

SEAndroid
SE Linux port to Android

Demo

* File system navigation using ADB

* Permission model view using
- Is -l (Long listing)
- Is -IZ (SELinux Context)
* Permission view for Applications

- /data/data/
- [/data/app/

Agenda

Application Architecture
- Application Components
- Application Structure

- The SDK and Android Tools
- Developing a basic application

Dalvik Virtual Machine

Designed and written by Dan Bornstein
Virtual machine for running android apps

Android apps written in Java, compiled and converted to Dalvik
bytecode format (dex — Dalvik Executable)

Dalvik bytecode different from Java bytecode

Dalvik was created to for computers with memory and
performance constraints

Dalvik is a register-based VM as apposed to stack based VM for
Java and uses a different instruction set

Dex

* Dex file format details: http://www.dalvikvm.com/

 Dex format is optimized for minimal memory
footprint

 Dex contains multiple classes per file as opposed to
one class per .java file

 Uses shared type-specific constant pools to
conserve memory by decreasing redundancy

Source: http://davidehringer.com/software/android/The_Dalvik_Virtual _Machine.pdf

Dex v/s Class

.class

Jar f.apk
d .class r,dex
Magic Murmber [Header] Mogic Mumber
Warsion of Class File Farmal Checksum Header
SHA-1 Signature
i N other
Strings
Constant Pool
Heterogeneous
Constant Pocl Constant Pool
Type/Class
Constant Pool
P g Field
e Flags
This Cless [&] Constant Pool
Super Closs
Interfacas
Method
Fielcts Field Constant Pool
Class
Definitions
tethods Method
Field List
p Method List]
Attributes Attributes
Code Header
. Local
- Variables
.class
" .
.

Zygote

It is the VM process that starts at boot time
Initializes core library classes and shares them across different forked VM instances.
Listens on UDS /dev/socket/zygote for VMs (app) to fork and launch.
Also sets appropriate UID/GID and groups based on the arguments and the requester
Code

— dalvik/*

— dalvikivm/*

- frameworks/base/core/java/com/android/internal/os/Zygote*.java

Application Structure

* Majorly written in java.

* /AndroidManifest.xml
= Project Details
> Permissions, Intents, Recievers
» Author, Application Name
> Max and min SDK supported
* /Res/Layout
= GUI Layout for all Activities
* /src
= Contains the whole Java source code
* /res/drawable
= |lcons and images
* /[res/menu
= Right click Menu entries
* /res/values
= Static values to be used in Application

v (8 SrC
v i com.anantshri.mounrw
» 1] MainActivity.java
» 38 gen [Generated Java Files]
+ =i Android 2.3.3
» =i Android Dependencies
= assets
» 2= bin
» & libs
v = res
¥ = drawable
fg, ic_launcher.png
v = layout
| activity_main.xmil
¥ = menu
d| activity_main.xmi|
¥ = values
d) strings.xml
| styles.xml
o AndroidManifest.xml
£ proguard-project.txt
[E project.properties

App components

 Activity
e |ntent
e Service

o AndroidManifest.xml

Activities

Ul component for one focused task

» Usually a single screen in your application

o Stack based approach where visible activity/screen
IS topmost activity on stack.

* Activity association is defined in the
AndroidManifest.xml

Activities
package nullcon.xah.test2;

import android.os.Bundle;
import android.app.Activity;

public class MainActivity extends Activity {

Main Activity ___@pugrride

Java Code public void onCreate(Bundle savedInstanceState) {
super .onCreate(savedInstanceState);
setContentView(R. layout.activity _main);

¥

<manifest }mln5:andrnid="http:!fschemes.andrﬂid.cnmfapkfres!andrﬂid"
package="nullcon.xah.test2" android:versionCode="1" android:versionName="7.0" >
<uses-sdk
android:minSdkVersion="8"

Andr_OId android:targetSdkVersion="15" /=
Manifest <application android:icon="@drawable/ic_launcher” android:label="@string/app_name"
Definition android:theme="@style/AppTheme" =
<activity
android:name=".MainActivity” android:label="@string/title activity main" =
<factivity>
</application=

</manifest>

Intent

* Intents ==Operations / Actions
 Defined in Manifest (AndroidManifest.xml)

e application — activity — intent-filter

Intents Sample

Main Activity plus Launcher Entry

<action android:name="android.intent.action.MAIN" />
<category androld:name="android.1intent.category.LAUNCHER" />

Registering yourself as browser

<activity android:name=".BrowserActivitiy" android:label="@string/app name"=
<intent-filter>
<action android:name="android.intent.action.VIEW" /=
<category android:name="android.intent.category.DEFAULT" /=
<data android:scheme="http"/>
</intent-filter=
<factivity>

Service

Background Jobs (No Ul)
Long running process. No effect on response.

Declare Service application — service

<service
android:name="MyService"
android:icon="@drawable/icon"
android:label="@string/service_name"
=

<fservice>

extends IntentService (one-time) or Service (Multiple)

protected void onHandlelntent(Intent intent)

Android Manifest.xml

» XML structure defining properties including
— Activities
— Intents

— User-permissions

Android Manifest.xml

<uses-permission /> - list of required permissions from OS.
<permission /> - list of permission calling party must have.
<uses-sdk /> - min max and target sdk versions.
<uses-configuration /> - hard and software configuration
<uses-feature /> - specific features (filters)

<application>

<activity> - activities provided by the application
<intent-filter> - various intents raised by application
<service> - background activity.

<receiver> - catch holder for system / broadcast intents.

Android SDK, NDK and Tools

Android SDK, NDK and tools

« SDK - Software Development Toolkit.

Name
v _| Tools

I Android SDK Tools
i Android SDK Platform-tools
¥ [| 2] Android 4.1 (API 16)
| Documentation for Android SDK
SDK Platform
{ Samples for SDK
ARM EABI v7a System Image
Intel x86 Atom System Image
Mips System Image
#. Google APls
Sources for Android SDK

API

16
16
16
16
16
16
16
16

Rev. Status

20.0.3 8 Installed

14

P B bk kB R B B

& Installed

~lr Not installed
,:a Installed

~lr Not installed
,:a Installed

~lr Not installed
~lr Not installed
lr Not installed
lr Not installed

Android SDK, NDK and tools

« NDK - native development kit

— Allows development of components in C / C++.
— allows reuse existing code libraries.
— possibly increased performance.
 Typical usage
- Self-contained,
— CPU-intensive operations,
— Signal processing,
— Physics simulation

- (Games

Tools

provided by SDK / NDK

« GCC compiler for ARM

* Tools/android — sdk/avd manager

e Too

e Too

. P
. P

atform-too

atform-too

s/ddms — debugging tool

s/emulator — emulator executable

s/adb — debug bridge

s/fastboot — flashing utility

ADB : Android Debug Bridge

ADB has ability to perform operations on android
device remotely.

Adb client -> adb server -> adb daemon
(Development machine) -> (device)

Some common usage

push : Push data inside Device

pull : Pull data from Device, file / folder
install : Install software in device. (apk)
logcat : realtime debug messages

With Recent version’s adb connects only to verified
devices. (verification taken on first connect)

Alternate Android VirtualMachines

* Geanymotion (recommanded)
- Virtualbox based x86 version of Android
- OpenGL rendering supported (speed++)
- Registration Required
* Jar of Beans (community project)
* BlueStack (non compatible with Android SDK)

Hello World App

e EXxercise

* A simple application which prints hello world using a
label with eclipse

Agenda

Pentesting Android

- Android Tamer & Environment Setup

- Black Box PT

- Reverse Engineering

- Rooting basics

- Understanding Pentesting Frameworks

Android Tamer

What i1s Android Tamer

« VM / Live ISO / Installable environment.
* Specific focus on Android Security.

* First Launched in Dec 2011 @ Clubhack 2011.
* Second Release with large set of enhancement

* Provides the most extensive Collection of tools for
android security.

More

* Based on Debian 7.

* Environment customized to keep all tools
in path.

* Browser loaded with Pentesting toolkit +
Bookmarks

* All non essential software's removed. But
could be added once installed on local
machine.

* Next updates will be through repositories
only.

Tools List

ROM Modding
— Rom kitchen
— Flashing utility

Rooting

— Zergrush (GB)

— adb restore (ICS /)B)

— APK based rooting options

Development
— Eclipse + ADT
— SDK + NDK

Pentesting

— OWASP ZAP proxy

— BURP proxy

— Firefox + pentest plugins

RE and malware Analysis

— Drozer (aka Mercury)

— Androguard

— Dex2jar

— JD-GUI

— APKtool

— Baksmali / smali

— Bulb Pentesting Framework

Wireless Capture
— Wireshark
— Tcpdump

Forensics
— AF logical OSE
— Sleuthkit

Rooting kits

« ZergRush - Valid for GingerBread

* Superoneclick
— Zergrush
— psneuter

* Gingerbreak
* Z4root
* superandRoot

ROM Modding

« ROM Kitchen

— Allows to modify existing ROMs add or
remove content or modify settings
(ro.secure=7)

* Flashing Utilities

— Flashtool :SONY Xperia Series

— Heimdall : SAMSUNG Galaxy Series

— SBP_flash : MOTOROLA phones

* Single Click ADB SHELL and LOGCAT
access

Reversing toolset

* |D-GUI

* JED

 DEX2JAR

* Smali / Baksmali
* APKtool

Malware Analysis

* DroidBox
* Mercury
* Androguard

Agenda

* Pentesting with Android

- Setting up the environment
- Various tool usage
- Writing custom tool in android

Pen Testing

Agenda

* Understanding Mobile Security Issues

* Setup Pen testing environment

Mobile Security Issues

Agenda

Data / Activity Sniffing

Unauthorized access to telephony layer (dialing, sms etc)
Unauthorized network access

Unsafe Data at transit / rest (XML / SQlite)

Hardcoded values Password / key / salt Untrusted inputs / intents
Data leakage Side channel

Information Disclosure

Logic / Time Bomb

Ul impersonation

Rooting

Application Security update cycles

OS level security updates

SQLi

Click / Tap jacking

Playing with Javascript

Data / Activity Sniffing

 Data and activities could be monitored on real
time

— Messaging (SMS and Email)

— Audio (calls and open microphone recording)
— Video (still and full-motion)

— Location

— Contact list

— Call history

— Browsing history

— Input

— Data files

* Example :Secret SMS Replicator

Access to telephony layer

Malware now a days are targeting SMS / Calls.
Premium SMS / Call -> high charge

USSD based purchases

Location specifics

Example
— FakePlayer : Premium SMS sending app

Unsafe data at transit

* Data Transmitted using insecure Channels.

- HTTP
- FTP
— Unsigned XML

* Protection : Use HTTPS

* Ever Heard of sslistrip ?

Hardcoded values

* Reverse Engineer the source Code and check
for hardcoded values

— Db connection strings
— Api keys for third party apps.

Side channel leakage

Data leakage occurring through residual data like cache or temp
files or keylogers.

Root Cause

— Bad coding practice from developer.
— Inherent OS specific features.
|dentification Techniques

— Before launching application take a snapshot of system. Launch application
perform all operations and then again take a snapshot. Find the change in
system look for residual file and data specially in temporary folders.

Action / Remediation:

— Avoid web data caching by setting proper headers.

Information disclosure

This risk is based on the fact that many developers hardcode the API
or password, also lots of applications are now shifting business
logic to client side.

 Root Cause

— Most of the web applications could be easily reverse engineered.
— Hardcoded API Keys, passwords and other sensitive information.
— Embedding business logic in client code.

* |dentification Techniques

— Decompile application and check if some hardcoded values are visible and if
business logic could be altered. (especially in case of financial applications)

* Action / Remediation:
— Values should not be hardcoded.
— Business logic should be kept separate at server side only.

Logic / Time Bomb

 Code to be activated

— Specific dates
— connecting to a network
— Dialing a number

— Receliving an sms

— You can think of some more

Ul Impersonation

* Application Posing as a known legitimate Apps
or websites.

* Prevention : Google app store has started
rejecting and banning applications performing
such tactics. (other app stores ??? And side
loading)

Rooting

Devices are by default running in a restricted
user environment (refer permissions section)

Root user holds ultimate authority over system.
All released android versions are vulnerable.
Exploits used to gain root access are

— OS based (Os level binary flaws)
— Devices specific files

Application Updates

Application Updates are send over the arr.
If update happening over Wifi sniffing is easy.

Google play store may apply security. But not
all stores are having all securities in place.

Play store is only available with Google
authorized phone manufacturers

OS level updates

* Android updates are largely carrier and
manufacturer dependent.

* Google updates AOSP others (manufacturers
and carriers) download and distribute.

* Only independent devices as of now

— (Google nexus series

Current OS distribution

Froyo

2.3.3- Gingerbread 10
2.3.7

3.2 Honeycomb 13

4.0.3- Ice Cream 15
4.0.4 Sandwich

41.x Jelly Bean 16
4.2.x 17
4.3 18

1.7%
26.3%

0.1%
19.8%

37.3%
12.5%
2.3%

Jelly Bean

lce Cream Sandwich

Honeycomb

Data collected during a /-day period ending on November 1, 2073.
Any versions with less than 0.1% distribution are not shown.

= Froyo

Gingarbread

SQLI

* Large amount of application have backend
running on a web server + db server backend.

 So tradition SQLi still works the deal is to find
the backend.

Click / Tap jacking

Clickjacking for mobile is Tap jacking.
Simmilar techniques like clickjacking.

Transparent frame placed on top of legitimate
looking button’s.

Could be used to earn ad revenue on clicks.

Javascript

* Javascript is the new playground.

* |frames and various javascript calls are hard to
detect on mobile browser.

* With HTML5S in picture now the vectors
availability has increased multifolds.

Setup Pentesting Environment

Setup

 Static Analysis Tools

— Reversing the apk
* Dex2jar + Jd-gui / jad
* Smali
* Network traffic interception
— OWASP ZAP
— Burp suite
* Backend and frontend scanning

— Emulator as isolated environment.
— Server side scanning (nikto, w3af, nmap)

Reversing the APK

* APK == JAR == TAR
* .dex ~~~ .classes merged
* Simplest process
— Unzip
— Dex2jar convert .dex to jar file
— Jd-gui / jad to decompile jar.
— Apktools : extract resources and correct binary xml

Network traffic interception

Using emulator or device define proxy.

Emulator —http-proxy http :// 127.0.0.1:8080
—avd <name>

Settings -> networks -> access point -> proxy
host -> port

For emulator localhost / base machine’s ip =
10.0.2.2

Network interception cont...

* |ssues In listed approach

1) SSL traffic most of the time will not be
intercepted and app will crash with
connection failure due to invalid certification.

1) Solution is to import the certificate of the proxy
server.

2) Export proxy cert from application
3) Adb push .cer /sdcard/
4) Settings -> security -> install from sdcard

1) Will have to set a pin for device.

Network traffic interception cont..

* Application traffic not proxified
For emulator’s
this is applicable till 2.3.3 emulator.

Tested above settings on 4.0 and 4.1 series and
all apps are by default proxified.

IPTables Based App level intercept

* Android runs each app with individal userid

 |PTables can be used to set rules for each
user.

 Combine these two and you can do all the
traffic interception you want.

SandroProxy

- SandroProxy 0 SandroProxy

1.jar
= & (]I’-1 H;ir.{jrmjri)x}l |Jrl.’}.‘:{‘_:,f [} JEII'I
Cu 5['0I'|'|1-7'|l.1f‘|r'|

lsl 2"-12&1'%(38121 1_custom_plugin_d

uid: 10008 ROM Manager

| \J
: 0 wid: 10007 Sound Recorder

| uid:10005 Superuser

~ 4
b Uid:10003 TT5 Service

uid: 10002 Contacts Storage,
. Search Applications
Provider, User Dictionary.
- uid: 1001 5IM Toolkit, Dialer
. a Storage, Dialer

uid: 1000 Theme Chooser,
|!] Armum 'and ﬂ:,nrs'-'::htnnsra

Tests at a Glance

device level tests

Data by app stored in

— /data/data/<app package name>
/sdcard content.

Look for xml or db’s for unencrypted data

File system could be scanned for changes
before and after install / usage / removal of
application

Backend Scanning

* During Network interception you can easily
identify the backend server ip’s / url’s

* nmap,w3af,nikto scan on backend could be
made to assess |it.

« Server side flaws need not be web flaws only,
any service running of server could be our
potential target.

Excercise

* App Protector.

— Protects your phone specific functions from
unauthorized access

— Or doesi it.
— Refer : /data/data/com.ruimaninfo.approtect/

 Defender

— A simple application where you can play and earn
powers at offline level and then compete with
opponent online.

Pentesting Frameworks

 Mercury / Drozer
 AFE (Android Framework for Exploitation)
 Smartphone Pentest Framework

Pentesting Through Android

Available Toolset

 DroidSheep

* Dsploit

* |nterceptor

* Network Discovery
e Shark

* Network Tools

o ZAnNti

Pentesting through Android

Setup Environment

- SL4A

- Py4a

- Pl4a

- setup standalone shell for them

Porting Existing tools

write basic scripts for python to perform basic operations

- username password bruteforce attack
- task automation using python
- username enumeration wordpress script

creating packages from scripts

Sample Scripts and Demo

 Python Based Wordpress Username
Enumeration

* Python based bruteforcing tool

Recap

We Learned

- What is Android

- Internal Working

- Application development

- Vulnerabilities

- How to Pentest an android application
— Penetration Testing Using Android

Any Questions

Thank You

	Android
	Slide 2
	Slide 3
	Slide 4
	Why Android
	Android
	Slide 7
	System Architecture
	Slide 9
	File System
	Slide 11
	Security model
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Application Structure
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	ADB : Android Debug Bridge
	Alternate Android VirtualMachines
	Slide 34
	Slide 35
	Android Tamer
	What is Android Tamer
	More
	Tools List
	Rooting kits
	ROM Modding
	Reversing toolset
	Malware Analysis
	Slide 44
	Slide 45
	Slide 46
	Mobile Security Issues
	Slide 48
	Data / Activity Sniffing
	Access to telephony layer
	Unsafe data at transit
	Hardcoded values
	Side channel leakage
	Information disclosure
	Logic / Time Bomb
	UI Impersonation
	Rooting
	Application Updates
	OS level updates
	Current OS distribution
	SQLi
	Click / Tap jacking
	Javascript
	Setup Pentesting Environment
	Setup
	Reversing the APK
	Network traffic interception
	Network interception cont…
	Network traffic interception cont..
	Slide 70
	Slide 71
	Slide 72
	Frontend / device scanning
	Backend Scanning
	Excercise
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

