GraphQL fantastic four

https://unsplash.com/photos/WWdCXWmDLQw
https://unsplash.com/photos/WWdCXWmDLQw
https://unsplash.com/photos/WWdCXWmDLQw

GraphQL fantastic four
Who am |

Charly POLY

W @whereischarly 2

https://twitter.com/whereischarly

GraphQL fantastic four
Who am |

Charly POLY

e Sr.Software Engineer at Double

e Former Tech lead at Algolia [€)

YW @whereischarly 2

https://twitter.com/whereischarly

GraphQL fantastic four
Who am |

Charly POLY

e Sr.Software Engineer at Double

e Former Tech lead at Algolia [€)

e Started using GraphQL 4 years ago

@whereischarly 2

https://twitter.com/whereischarly

On G I’athL GraphQL fantastic four

Honest Engineering

Why use GraphQL, good
and bad reasons

@whereischarly

https://twitter.com/whereischarly

On G I’athL GraphQL fantastic four

Why use GraphQL, good
and bad reasons

@whereischarly -

https://twitter.com/whereischarly

GraphQL fantastic four
On GraphQL

Why use GraphQL, good
and bad reasons

e Build smooth user-experiences
"Ask for what you want", optimistic Uls

@whereischarly 3.2

https://twitter.com/whereischarly

GraphQL fantastic four

On GraphQL

Why use GraphQL, good
and bad reasons

e Build smooth user-experiences
"Ask for what you want", optimistic Uls

e Solve data-complexity issue on front-end side
Apollo cache, typed mutations, DDD APIs

@whereischarly

https://twitter.com/whereischarly

GraphQL fantastic four

On GraphQL

Why use GraphQL, good
and bad reasons

e Build smooth user-experiences
"Ask for what you want", optimistic Uls

e Solve data-complexity issue on front-end side
Apollo cache, typed mutations, DDD APIs

e Microservices orchestration
Apollo schema stitching &d Apollo Federation

@whereischarly

https://twitter.com/whereischarly

GraphQL fantastic four
On GraphQL

" GraphQL is much more than an efficient
way of fetching data from the client side

@whereischarly

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL as
application
state management

https://unsplash.com/photos/h6xNSDlgciU

GraphQL as application state management GraphQL fantastic four

@whereischarly 5.2

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

@whereischarly 5.2

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

&

@whereischarly 5.2

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

S V[

W @whereischarly 5.2

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

@whereischarly 5.3

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

1. GraphQL is a "data query and manipulation language for APIs"

@whereischarly 5.3

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

1. GraphQL is a "data query and manipulation language for APIs"

2. What if your state behave like a local API?

@whereischarly 5.3

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

1. GraphQL is a "data query and manipulation language for APIs"
2. What if your state behave like a local API?

3. &d Apollo GraphQL Local state management

@whereischarly 5.3

https://twitter.com/whereischarly

GraphQL as application state management

const QUERY = gql
query getAlerts {
workspace @client {
id @export(as: "workspaceId")

+

alerts(workspaceId: $workspaceId) {
1d
title
#

1
i)

onboardingNoticeClosed aqclient
!
J

const myComponent = () = {
const { data, loading, error } = useQuery(QUERY)

@whereischarly

GraphQL fantastic four

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

const QUERY = gql
query getAlerts {

workspace @client {
id @export(as: "workspaceId")

+

alerts(workspaceId: $workspaceId) {

1d . .
Title e @client directive for local state
...

:

J

onboardingNoticeClosed aqclient
!
J

const myComponent = () = {
const { data, loading, error } = useQuery(QUERY)

@whereischarly 5.4

https://twitter.com/whereischarly

GraphQL as application state management

const QUERY = gql
query getAlerts {

workspace @client {
id @export(as: "workspaceId")

+

alerts(workspaceId: $workspaceId) {
1d
title
TLR.

1
i)

onboardingNoticeClosed aqclient
!
J

const myComponent = () = {
const { data, loading, error } = useQuery(QUERY)

@whereischarly

GraphQL fantastic four

e @client directive for local state

e One language and hooks set for all data

https://twitter.com/whereischarly

GraphQL as application state management

const QUERY = gql
query getAlerts {

workspace @client {
id @export(as: "workspaceId")

+

alerts(workspaceId: $workspaceId) {
1d
title
TLR.

1
i)

onboardingNoticeClosed aqclient
!
J

const myComponent = () = {
const { data, loading, error } = useQuery(QUERY)

@whereischarly

GraphQL fantastic four

e @client directive for local state
e One language and hooks set for all data

e | ocal fields as variables

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

Local scalar values

query {

sessionlId @client

}

e query without local resolver
e use "client.writeData()" to
initialize and update state

@whereischarly 5.5

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

Local scalar values Local complex values or computed values

query {
preferences @client {
darkMode

query {

sessionlId @client

}

language
notificationsEnabled

}
}

e query without local resolver e |ocal mutations
e use "client.writeData()" to e |ocal resolvers
initialize and update state e APC 3 TypePolicy (read)

@whereischarly 5.5

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

Local complex values or computed values

const client = new ApolloClient({
cache:

preferences: () = {
const data = localStor retItem('app-preferences');

query {

preferences aclient { return data ? JSON.parse . [l {}
darkMode
language b

Mutation: {
updatePreferences: (_, preferences, { cache }) = {
localStorage.setItem(
"app-preferences', JSON.stringify(preferences)
)
const data = { { ... preferences, _ typename: 'Preferences'} };
cache.writeData({ data });

notificationsEnabled

@whereischarly 5.6

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

Full local state management capabilities

@whereischarly 5.7

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

Full local state management capabilities

e State: managed by ApolloCache, along side with APIs data

@whereischarly 5.7

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

Full local state management capabilities

e State: managed by ApolloCache, along side with APIs data

e Computed values: local resolvers (or APC 3 TypePolicy)

@whereischarly 5.7

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

Full local state management capabilities

e State: managed by ApolloCache, along side with APIs data
e Computed values: local resolvers (or APC 3 TypePolicy)

e Actions: mutations or client.writeQuery()

@whereischarly 5.7

https://twitter.com/whereischarly

GraphQL as application state management

Full local state management capabilities

@whereischarly

State: managed by ApolloCache, along side with APIs data
Computed values: local resolvers (or APC 3 TypePolicy)
Actions: mutations or client.writeQuery()

Reactions: Apollo ObservableQuery

GraphQL fantastic four

https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

Full local state management capabilities

e State: managed by ApolloCache, along side with APIs data
e Computed values: local resolvers (or APC 3 TypePolicy)

e Actions: mutations or client.writeQuery()

e Reactions: Apollo ObservableQuery

e Tools: Apollo Client Dev tools

@whereischarly 5.7

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL
-~ generation powers

https://unsplash.com/photos/6yjAC0-OwkA

: GraphQL fantastic four
GraphQL generation powers P

’ GraphQL introspection is a core
- most underrated - feature of the language

@whereischarly 6.2

https://twitter.com/whereischarly

GraphQL fantastic fou

GraphQL generation powers

State of JS 2019

@whereischarly

https://twitter.com/whereischarly
https://2019.stateofjs.com/overview/

: GraphQL fantastic four
GraphQL generation powers P

Given a GraphQL Schema, generates:

e TypeScript types definition
o React Apollo hooks definition

{ GraphQL } e urql components
COde generator e Types for Flow, Java, Kotlin

W @whereischarly 6.4

https://twitter.com/whereischarly

GraphQL generation powers

scalar

schema {
query:

}

type

query currentUser {
me

@whereischarly

https://graphql-code-generator.com

GraphQL fantastic four

https://twitter.com/whereischarly
https://graphql-code-generator.com/

: GraphQL fantastic four
GraphQL generation powers :

export type

i
scalar
export
schema {

query:

type

me:

name:

ren

rname

export t Current ery R I ReturnT

export typ rre rl ryHookRe t = ReturnType<typeof

export t

@whereischarly https://graphgl-code-generator.com 6.5

https://twitter.com/whereischarly
https://graphql-code-generator.com/

: GraphQL fantastic four
GraphQL generation powers P

GraphQL without query definition

@whereischarly 6.6

https://twitter.com/whereischarly

: GraphQL fantastic four
GraphQL generation powers P

GQLess: GraphQL without queries

const User = graphql(({ user }: { user: User }) = (
<div>
<h2>{user.namel}</h2>
<img src={user.avatarUrl({ size: bt A
</div>

))

const App = graphql(() = (
<div>

{query.users.map(user = (
<User key={user.id} user={user} />

))}

</div>

)

@whereischarly https://github.com/samdenty/gqless 6.7

https://twitter.com/whereischarly
https://github.com/samdenty/gqless

: GraphQL fantastic four
GraphQL generation powers P

GQLess: GraphQL without queries

const User = graphql(({ user }: { user: User }) = (o000
<div>
<h2>{user.name}</h2> query App {
<img src={user.avatarUrl({ size: b} users {
</div> .

1d
)) EILE

avatarUrl(size:
const App = graphql(() = (}
<div> }
{query.users.map(user = (
<User key={user.id} user={user} />

))}

</div>

)

@whereischarly https://github.com/samdenty/gqless 6.7

https://twitter.com/whereischarly
https://github.com/samdenty/gqless

: GraphQL fantastic four
GraphQL generation powers P

React forms from GraphQL mutation

@whereischarly 6.8

https://twitter.com/whereischarly

: GraphQL fantastic four
GraphQL generation powers P

Frontier: Forms from GraphQL mutation

import gql from "graphqgl-tag";

import { Frontier } from "frontier-forms";
import { myApplicationKit } from "./uiKit";
import { client } from "./apollo-client";

const mutation = gql~
mutation($user: User!) {
createUser(user: $user) { id }

}

<Frontier
client={client}
mutation={mutation}
uikKit={myApplicationKit}

/>

@whereischarly https://frontier-forms.dev 6.9

https://twitter.com/whereischarly
https://frontier-forms.dev/

: GraphQL fantastic four
GraphQL generation powers P

Frontier: Forms from GraphQL mutation
Create a user

o000 Company name -
import gql from "graphqgl-tag";
import { Frontier } from "frontier-forms";
import { myApplicationKit } from "./uiKit"; E-mail *
import { client } from "./apollo-client";
const mutation = gql
mutation($user: User!) { First name ~
createUser(user: $user) { id }
}
; *®
Last name
<Frontier
client={client}
mutation={mutation}
uiKit={myApplicationKit}
/> Save

@whereischarly https://frontier-forms.dev 6.9

https://twitter.com/whereischarly
https://frontier-forms.dev/

: GraphQL fantastic four
GraphQL generation powers P

GraphQL special power: introspection

@whereischarly 6.10

https://twitter.com/whereischarly

: GraphQL fantastic four
GraphQL generation powers P

GraphQL special power: introspection

e Stronger types

@whereischarly 6.10

https://twitter.com/whereischarly

: GraphQL fantastic four
GraphQL generation powers P

GraphQL special power: introspection

e Stronger types

e Bootstrapping of client configuration

@whereischarly 6.10

https://twitter.com/whereischarly

: GraphQL fantastic four
GraphQL generation powers P

GraphQL special power: introspection

e Stronger types
e Bootstrapping of client configuration

o Better developer experience via documents

@whereischarly 6.10

https://twitter.com/whereischarly

1l 1 |,.“:,7 . . bid I' |" ié
e e | Lk ! .
o Wl ! i B GraphQL fantastic four
: j:,,nl' |

ql g 1
.,.||l"' .““'“ I

W
’ ! 1Ll
. qu'l . ““l” .‘;mlll"I it
2 f .l|'”“ l] m'""”l il

1 e LTl

o™ g o e R

' mnu“iﬁ:jﬁiliiﬂﬁ"“ ::"H““““ *" ,“u'unl'g? L1 Gra hQL fOr
:|lil“""”imu““..1:un'"'“"" ll ””.*.“H.:JI”!”““" - :

|
st 11T " :]”-””“ J

S e hack-end to back-end

WHTTITITIIR l "] e ’I 4
ST, T
o m“”” LTI T . “.I |

| : :;;:::||||l|jw.||||' . 1i||“””““”'|“““ ||i|li|l|ll|n.‘,:
’ :EE"ﬁmu.:::”""HH '““HmnuH”'“H
| |

w VI |
— Mgy, -|I||““
o 'ﬁll"”‘”

" :-;Wmu.‘m

B i s

ST

‘n:mnum..‘ :

||']l||||“II
"y

https://unsplash.com/photos/KiH2-tdGQRY

GraphQL fantastic four

GraphQL for back-end to back-end

Front-end Back-end

H

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Back-end Back-end

H

7.3

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

More flexible rate limiting
A story

@whereischarly

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Story: more flexible rate-limiting

Shopify Algolia

requests
for each product

API

https://twitter.com/whereischarly

GraphQL for back-end to back-end

Story: more flexible rate-limiting

Shopify REST API rate limiting

® per shop
e ratelimit = 2 requests / seconds

(Request-based limit)

@whereischarly

GraphQL fantastic four

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Story: more flexible rate-limiting

Shopify REST API rate limiting Shopify GraphQL APl rate limiting
® per shop ® per shop
e ratelimit = 2 requests / seconds e 1field =1 point (Calculated query cost)
(Request-based limit) e rate limit = 50 points / seconds

@whereischarly 7.6

https://twitter.com/whereischarly

GraphQL for back-end to back-end

Story: more flexible rate-limiting

product {
1d
metafields(first:) o

node {
id
key
namespace
value

@whereischarly

GraphQL fantastic four

https://twitter.com/whereischarly

GraphQL for back-end to back-end

Story: more flexible rate-limiting

{

product {
1d
metafields(first:) o
edges {
node {

1d
key
namespace
value

@whereischarly

Cost of the query =

1+
10 x (
1+1+1+1

)

=41 points

GraphQL fantastic four

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Story: more flexible rate-limiting

product {
1d
metafields(first:

node {
id
key
namespace
value

@whereischarly 7.8

https://twitter.com/whereischarly

GraphQL for back-end to back-end

Story: more flexible rate-limiting

product {
1d
metafields(first:
edges {
node {
1d

key
namespace
value

@whereischarly

GraphQL fantastic four

7.8

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Story: more flexible rate-limiting

"Flexible throttling" indexing system using GraphQL

@whereischarly 7.9

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Story: more flexible rate-limiting

"Flexible throttling" indexing system using GraphQL

e Each customer (shop) has a points score assigned

@whereischarly 7.9

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Story: more flexible rate-limiting

"Flexible throttling" indexing system using GraphQL

e Each customer (shop) has a points score assigned

e Given the customer score, we compute if a query can be performed

@whereischarly 7.9

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Story: more flexible rate-limiting

"Flexible throttling" indexing system using GraphQL
e Each customer (shop) has a points score assigned

e Given the customer score, we compute if a query can be performed

o After each query, we update the shop score

@whereischarly 7.9

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Story: more flexible rate-limiting

"Flexible throttling" indexing system using GraphQL

e Each customer (shop) has a points score assigned
e Given the customer score, we compute if a query can be performed

o After each query, we update the shop score

Went from 2-4 products per second

@whereischarly 7.9

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Story: more flexible rate-limiting

"Flexible throttling" indexing system using GraphQL

e Each customer (shop) has a points score assigned
e Given the customer score, we compute if a query can be performed

o After each query, we update the shop score

Went from 2-4 products per second » to 10-50 products per second

@whereischarly 7.9

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Companies providing GraphQL APl with
"Calculated query cost” rate limiting

GitHub

ﬂ shopify

@whereischarly 7.10

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Take-aways

@whereischarly 7.1

https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Take-aways

e New API rate limiting offering
More granular throttling

@whereischarly 7.1

https://twitter.com/whereischarly

GraphQL for back-end to back-end

Take-aways

e New APl rate limiting offering
More granular throttling

e Maintainable data pipelines
Abstract complex APls, ex: GraphQL Mesh

@whereischarly

GraphQL fantastic four

S ¢ m

Typed OpenAPl SDK Typed WSDL SDK Typed gRPC SDK Typed GraphQL SDK
Generated Resolvers Generated Resolvers Generated Resolvers Generated Resolvers
GraphQL Schema GraphQL Schema GraphQL Schema GraphQL Schema

GraphQL Schema

https://twitter.com/whereischarly

GraphQL fantastic four

"resolvers-less’
GraphQL

https://unsplash.com/photos/kHWF8EluyLE

"resolvers-less” GraphQL GraphQL fantastic four

GQL SQL

https://unsplash.com/photos/h6xNSDlgciU
https://twitter.com/whereischarly

"resolvers-less” GraphQL GraphQL fantastic four

@whereischarly

https://unsplash.com/photos/h6xNSDlgciU
https://twitter.com/whereischarly

"resolvers-less” GraphQL GraphQL fantastic four

sSQL

SELECT id, name FROM profile
WHERE id user_id

Hasura translate GraphQL AST to SQL AST,
providing blazing fast execution with G avery
HASURA
minimum configuration

profile {
id

name

}

}
#z GRAPHQL

Authorization: XO0XXX

CLIENT

@whereischarly 8.3

https://unsplash.com/photos/h6xNSDlgciU
https://twitter.com/whereischarly

"resolvers-less” GraphQL GraphQL fantastic four

Hasura features

@whereischarly 8.4

https://unsplash.com/photos/h6xNSDlgciU
https://twitter.com/whereischarly

"resolvers-less” GraphQL GraphQL fantastic four

Hasura features

e ACL support

@whereischarly 8.4

https://unsplash.com/photos/h6xNSDlgciU
https://twitter.com/whereischarly

"resolvers-less” GraphQL GraphQL fantastic four

Hasura features

e ACL support
e Authentication / Authorization (JWT)

@whereischarly 8.4

https://unsplash.com/photos/h6xNSDlgciU
https://twitter.com/whereischarly

"resolvers-less” GraphQL GraphQL fantastic four

Hasura features

e ACL support
e Authentication / Authorization (JWT)

e Remote schemas support

@whereischarly 8.4

https://unsplash.com/photos/h6xNSDlgciU
https://twitter.com/whereischarly

"resolvers-less” GraphQL GraphQL fantastic four

Hasura features

e ACL support
e Authentication / Authorization (JWT)
e Remote schemas support

e Subscriptions support

@whereischarly 8.4

https://unsplash.com/photos/h6xNSDlgciU
https://twitter.com/whereischarly

"resolvers-less” GraphQL GraphQL fantastic four

Hasura features

e ACL support

e Authentication/ Authorization (JWT)
e Remote schemas support

e Subscriptions support

e Trigger web-hooks on database events

@whereischarly 8.4

https://unsplash.com/photos/h6xNSDlgciU
https://twitter.com/whereischarly

"resolvers-less” GraphQL GraphQL fantastic four

Hasura features

e ACL support

e Authentication/ Authorization (JWT)
e Remote schemas support

e Subscriptions support

e Trigger web-hooks on database events

e Bonus: one-click install on most cloud providers

@whereischarly 8.4

https://unsplash.com/photos/h6xNSDlgciU
https://twitter.com/whereischarly

Conclusion GraphQL fantastic four

GraphQL brings innovation beyond "front-end querying APIs”

@whereischarly 9

https://twitter.com/whereischarly

Conclusion GraphQL fantastic four

GraphQL brings innovation beyond "front-end querying APIs”

e Apollo GraphQL is reliable for local state management

@whereischarly 9

https://twitter.com/whereischarly

Conclusion GraphQL fantastic four

GraphQL brings innovation beyond "front-end querying APIs”

e Apollo GraphQL is reliable for local state management

e GraphQL brings flexibility in back-end to back-end use-cases

@whereischarly 9

https://twitter.com/whereischarly

Conclusion GraphQL fantastic four

GraphQL brings innovation beyond "front-end querying APIs”

e Apollo GraphQL is reliable for local state management
e GraphQL brings flexibility in back-end to back-end use-cases

e GraphQL introspection finally brought great tools on front-end

@whereischarly 9

https://twitter.com/whereischarly

Conclusion

GraphQL fantastic four

GraphQL brings innovation beyond "front-end querying APIs”

@whereischarly

Apollo GraphQL is reliable for local state management
GraphQL brings flexibility in back-end to back-end use-cases
GraphQL introspection finally brought great tools on front-end

GraphQL to SQL brings powerful server-less GraphQL use-cases

https://twitter.com/whereischarly

Thank youl

J1 slides on noti.st/charlypoly
@whereischarly

l @wittydeveloper

https://noti.st/charlypoly
https://twitter.com/whereischarly
https://github.com/wittydeveloper

