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Who am |

Charly POLY

e Sr.Software Engineer at Double

e Former Tech lead at Algolia [€)

e Started using GraphQL 4 years ago
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On GraphQL

Why use GraphQL, good
and bad reasons

e Build smooth user-experiences
"Ask for what you want", optimistic Uls

e Solve data-complexity issue on front-end side
Apollo cache, typed mutations, DDD APIs

e Microservices orchestration
Apollo schema stitching &d Apollo Federation
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" GraphQL is much more than an efficient
way of fetching data from the client side
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1. GraphQL is a "data query and manipulation language for APIs"
2. What if your state behave like a local API?

3. &d Apollo GraphQL Local state management
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GraphQL as application state management

const QUERY = gql
query getAlerts {
workspace @client {
id @export(as: "workspaceId")

+

alerts(workspaceId: $workspaceId) {
1d
title
#

1
i)

onboardingNoticeClosed aqclient
!
J

const myComponent = () = {
const { data, loading, error } = useQuery(QUERY)
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const QUERY = gql
query getAlerts {

workspace @client {
id @export(as: "workspaceId")

+

alerts(workspaceId: $workspaceId) {

1d . .
Title e @client directive for local state
# ...

:

J

onboardingNoticeClosed aqclient
!
J

const myComponent = () = {
const { data, loading, error } = useQuery(QUERY)
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GraphQL as application state management

const QUERY = gql
query getAlerts {

workspace @client {
id @export(as: "workspaceId")

+

alerts(workspaceId: $workspaceId) {
1d
title
TLR.

1
i)

onboardingNoticeClosed aqclient
!
J

const myComponent = () = {
const { data, loading, error } = useQuery(QUERY)
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GraphQL as application state management

const QUERY = gql
query getAlerts {

workspace @client {
id @export(as: "workspaceId")

+

alerts(workspaceId: $workspaceId) {
1d
title
TLR.

1
i)

onboardingNoticeClosed aqclient
!
J

const myComponent = () = {
const { data, loading, error } = useQuery(QUERY)

@whereischarly
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e @client directive for local state
e One language and hooks set for all data
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Local scalar values

query {

sessionlId @client

}

e query without local resolver
e use "client.writeData()" to
initialize and update state
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Local scalar values Local complex values or computed values

query {
preferences @client {
darkMode

query {

sessionlId @client

}

language
notificationsEnabled

}
}

e query without local resolver e |ocal mutations
e use "client.writeData()" to e |ocal resolvers
initialize and update state e APC 3 TypePolicy (read)

@whereischarly 5.5


https://twitter.com/whereischarly

GraphQL as application state management GraphQL fantastic four

Local complex values or computed values

const client = new ApolloClient({
cache:

preferences: () = {
const data = localStor retItem( 'app-preferences');

query {

preferences aclient { return data ? JSON.parse . [l {}
darkMode
language b

Mutation: {
updatePreferences: (_, preferences, { cache }) = {
localStorage.setItem(
"app-preferences', JSON.stringify(preferences)
)
const data = { { ... preferences, _ typename: 'Preferences'} };
cache.writeData({ data });

notificationsEnabled
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GraphQL as application state management

Full local state management capabilities

@whereischarly

State: managed by ApolloCache, along side with APIs data
Computed values: local resolvers (or APC 3 TypePolicy)
Actions: mutations or client.writeQuery()

Reactions: Apollo ObservableQuery
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GraphQL as application state management GraphQL fantastic four

Full local state management capabilities

e State: managed by ApolloCache, along side with APIs data
e Computed values: local resolvers (or APC 3 TypePolicy)

e Actions: mutations or client.writeQuery()

e Reactions: Apollo ObservableQuery

e Tools: Apollo Client Dev tools
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-~ generation powers
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’ GraphQL introspection is a core
- most underrated - feature of the language
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GraphQL generation powers

State of JS 2019

@whereischarly


https://twitter.com/whereischarly
https://2019.stateofjs.com/overview/
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Given a GraphQL Schema, generates:

e TypeScript types definition
o React Apollo hooks definition

{ GraphQL } e urql components
COde generator e Types for Flow, Java, Kotlin
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GraphQL generation powers

scalar

schema {
query:

}

type

query currentUser {
me

@whereischarly

https://graphql-code-generator.com
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GraphQL generation powers :

export type

i
scalar
export
schema {

query:

type

me:

name:

ren

rname

export t Current ery R I ReturnT

export typ rre rl ryHookRe t = ReturnType<typeof

export t
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GraphQL without query definition
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GQLess: GraphQL without queries

const User = graphql(({ user }: { user: User }) = (
<div>
<h2>{user.namel}</h2>
<img src={user.avatarUrl({ size: bt A
</div>

))

const App = graphql(() = (
<div>

{query.users.map(user = (
<User key={user.id} user={user} />

))}

</div>

)

@whereischarly https://github.com/samdenty/gqless 6.7
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GQLess: GraphQL without queries

const User = graphql(({ user }: { user: User }) = ( o000
<div>
<h2>{user.name}</h2> query App {
<img src={user.avatarUrl({ size: b} users {
</div> .

1d
)) EILE

avatarUrl(size:
const App = graphql(() = ( }
<div> }
{query.users.map(user = (
<User key={user.id} user={user} />

))}

</div>

)
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React forms from GraphQL mutation
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Frontier: Forms from GraphQL mutation

import gql from "graphqgl-tag";

import { Frontier } from "frontier-forms";
import { myApplicationKit } from "./uiKit";
import { client } from "./apollo-client";

const mutation = gql~
mutation($user: User!) {
createUser(user: $user) { id }

}

<Frontier
client={client}
mutation={mutation}
uikKit={myApplicationKit}

/>

@whereischarly https://frontier-forms.dev 6.9


https://twitter.com/whereischarly
https://frontier-forms.dev/
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Frontier: Forms from GraphQL mutation
Create a user

o000 Company name -
import gql from "graphqgl-tag";
import { Frontier } from "frontier-forms";
import { myApplicationKit } from "./uiKit"; E-mail *
import { client } from "./apollo-client";
const mutation = gql
mutation($user: User!) { First name ~
createUser(user: $user) { id }
}
; *®
Last name
<Frontier
client={client}
mutation={mutation}
uiKit={myApplicationKit}
/> Save
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GraphQL special power: introspection
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GraphQL special power: introspection

e Stronger types
e Bootstrapping of client configuration

o Better developer experience via documents

@whereischarly 6.10
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Back-end Back-end
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GraphQL for back-end to back-end

More flexible rate limiting
A story

@whereischarly


https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Story: more flexible rate-limiting

Shopify Algolia

requests
for each product

API
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GraphQL for back-end to back-end

Story: more flexible rate-limiting

Shopify REST API rate limiting

® per shop
e ratelimit = 2 requests / seconds

(Request-based limit)

@whereischarly
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GraphQL for back-end to back-end

Story: more flexible rate-limiting

Shopify REST API rate limiting Shopify GraphQL APl rate limiting
® per shop ® per shop
e ratelimit = 2 requests / seconds e 1field =1 point (Calculated query cost)
(Request-based limit) e rate limit = 50 points / seconds
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GraphQL for back-end to back-end

Story: more flexible rate-limiting

product {
1d
metafields(first: ) o

node {
id
key
namespace
value

@whereischarly
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GraphQL for back-end to back-end

Story: more flexible rate-limiting

{

product {
1d
metafields(first: ) o
edges {
node {

1d
key
namespace
value

@whereischarly

Cost of the query =

1+
10 x (
1+1+1+1

)

=41 points
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GraphQL for back-end to back-end

Story: more flexible rate-limiting

product {
1d
metafields(first:

node {
id
key
namespace
value
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GraphQL for back-end to back-end

Story: more flexible rate-limiting

product {
1d
metafields(first:
edges {
node {
1d

key
namespace
value

@whereischarly
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Story: more flexible rate-limiting

"Flexible throttling" indexing system using GraphQL
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"Flexible throttling" indexing system using GraphQL
e Each customer (shop) has a points score assigned

e Given the customer score, we compute if a query can be performed

o After each query, we update the shop score

@whereischarly 7.9


https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Story: more flexible rate-limiting

"Flexible throttling" indexing system using GraphQL

e Each customer (shop) has a points score assigned
e Given the customer score, we compute if a query can be performed

o After each query, we update the shop score

Went from 2-4 products per second
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GraphQL for back-end to back-end

Story: more flexible rate-limiting

"Flexible throttling" indexing system using GraphQL

e Each customer (shop) has a points score assigned
e Given the customer score, we compute if a query can be performed

o After each query, we update the shop score

Went from 2-4 products per second » to 10-50 products per second

@whereischarly 7.9


https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Companies providing GraphQL APl with
"Calculated query cost” rate limiting

GitHub

ﬂ shopify

@whereischarly 7.10


https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Take-aways

@whereischarly 7.1


https://twitter.com/whereischarly

GraphQL fantastic four

GraphQL for back-end to back-end

Take-aways

e New API rate limiting offering
More granular throttling

@whereischarly 7.1


https://twitter.com/whereischarly

GraphQL for back-end to back-end

Take-aways

e New APl rate limiting offering
More granular throttling

e Maintainable data pipelines
Abstract complex APls, ex: GraphQL Mesh

@whereischarly

GraphQL fantastic four

S ¢ m

Typed OpenAPl SDK Typed WSDL SDK Typed gRPC SDK Typed GraphQL SDK
Generated Resolvers Generated Resolvers Generated Resolvers Generated Resolvers
GraphQL Schema GraphQL Schema GraphQL Schema GraphQL Schema

GraphQL Schema
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sSQL

SELECT id, name FROM profile
WHERE id user_id

Hasura translate GraphQL AST to SQL AST,
providing blazing fast execution with G avery
HASURA
minimum configuration

profile {
id

name

}

}
#z GRAPHQL

Authorization: XO0XXX

CLIENT
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Hasura features
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e Authentication / Authorization (JWT)

e Remote schemas support
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Hasura features

e ACL support
e Authentication / Authorization (JWT)
e Remote schemas support

e Subscriptions support
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Hasura features

e ACL support

e Authentication/ Authorization (JWT)
e Remote schemas support

e Subscriptions support

e Trigger web-hooks on database events
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Hasura features

e ACL support

e Authentication/ Authorization (JWT)
e Remote schemas support

e Subscriptions support

e Trigger web-hooks on database events

e Bonus: one-click install on most cloud providers
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Conclusion

GraphQL fantastic four

GraphQL brings innovation beyond "front-end querying APIs”

@whereischarly

Apollo GraphQL is reliable for local state management
GraphQL brings flexibility in back-end to back-end use-cases
GraphQL introspection finally brought great tools on front-end

GraphQL to SQL brings powerful server-less GraphQL use-cases
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Thank youl

J1 slides on noti.st/charlypoly
@whereischarly

l @wittydeveloper
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