
 1

Bringing Observability
to Your Stream
Processing
September, 17th, 2019

@gamussa | #CodeOne | @ConfluentINc

@gamussa | #CodeOne | @ConfluentINc

 2

@gamussa | #CodeOne | @ConfluentINc

 3

I build highly scalable

Hello World

apps

@gamussa | #CodeOne | @ConfluentINc

 3

I build highly scalable

Hello World

apps
@kennybastani

Raffle, yeah 🚀

Raffle, yeah 🚀
Follow @gamussa @confluentinc
 📸 🖼 🏋

Tag @gamussa

With #CodeOne

Ph
ot

o
by
 K

ha
i S

ze
 O

ng
 o

n
U

ns
pl

as
h

https://unsplash.com/photos/ipyxkiJtdYI?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Ph
ot

o
by
 R

ai
ni

er
 R

id
ao
 o

n
U

ns
pl

as
h

\

https://unsplash.com/photos/YUIGZ33SB_0?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Ph
ot

o
by
 R

oh
it

Ta
nd

on
 o

n
U

ns
pl

as
h

https://unsplash.com/photos/HyZaYuPXyEo?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Ph
ot

o
by
 T

he
od

or
e

M
oo

re
 o

n
U

ns
pl

as
h

https://unsplash.com/photos/E3Z6DRnqxYU?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Ph
ot

o
by
 C

ris
tia

n
G

re
cu
 o

n
U

ns
pl

as
h

https://unsplash.com/photos/_ykb4UBjtGU?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

@gamussa | #CodeOne | @ConfluentINc

 10

@gamussa | #CodeOne | @ConfluentINc

How did we do monitoring?

@gamussa | #CodeOne | @ConfluentINc

How did we do monitoring?

● Each system would have their very
own monitoring system.

@gamussa | #CodeOne | @ConfluentINc

How did we do monitoring?

● Each system would have their very
own monitoring system.

● Developers would not worry about
monitoring. This was supposed to
be “IT stuff”.

@gamussa | #CodeOne | @ConfluentINc

How did we do monitoring?

● Each system would have their very
own monitoring system.

● Developers would not worry about
monitoring. This was supposed to
be “IT stuff”.

● Application was deemed OK if all
systems were showing green.

@gamussa | #CodeOne | @ConfluentINc

How did we do monitoring?

● Each system would have their very
own monitoring system.

● Developers would not worry about
monitoring. This was supposed to
be “IT stuff”.

● Application was deemed OK if all
systems were showing green.

● Different monitoring approaches
were used throughout the entire IT
stack portfolio, requiring many
teams to be involved.

@@gamussa | #CodeOne | @ConfluentINc

WTF 🤬

@@gamussa | #CodeOne | @ConfluentINc

WTF 🤬

@@gamussa | #CodeOne | @ConfluentINc

WTF 🤬

troubleshooting. Days, weeks, months!

@@gamussa | #CodeOne | @ConfluentINc

WTF 🤬 System IS working!

troubleshooting. Days, weeks, months!

@gamussa | #CodeOne | @ConfluentINc

 13

@gamussa | #CodeOne | @ConfluentINc

 13

@gamussa | #CodeOne | @ConfluentINc

 14

Intro to
observability

@gamussa | #CodeOne | @ConfluentINc

 15

@gamussa | #CodeOne | @ConfluentINc

 16

The Pillars of
observability

@gamussa | #CodeOne | @ConfluentINc

 18

🤔

@gamussa | #CodeOne | @ConfluentINc

 18

🤔

@gamussa | #CodeOne | @ConfluentINc

 18

🤔

A raw sequence of
events from a single
instance of service

@gamussa | #CodeOne | @ConfluentINc

 19

@gamussa | #CodeOne | @ConfluentINc

 19

@gamussa | #CodeOne | @ConfluentINc

 19

Metrics:
numerical measures

aggregated in given point of
time

@gamussa | #CodeOne | @ConfluentINc

Pillars of observability

@gamussa | #CodeOne | @ConfluentINc

Pillars of observability

● Distributed Tracing

@gamussa | #CodeOne | @ConfluentINc

Pillars of observability

● Distributed Tracing

● detailed execution of the
causality-related activities
performed by a given
transaction. It answers:

@gamussa | #CodeOne | @ConfluentINc

Pillars of observability

● Distributed Tracing

● detailed execution of the
causality-related activities
performed by a given
transaction. It answers:

○ Which services were involved?

@gamussa | #CodeOne | @ConfluentINc

Pillars of observability

● Distributed Tracing

● detailed execution of the
causality-related activities
performed by a given
transaction. It answers:

○ Which services were involved?

○ If it was slow, who caused
that?

@gamussa | #CodeOne | @ConfluentINc

Pillars of observability

● Distributed Tracing

● detailed execution of the
causality-related activities
performed by a given
transaction. It answers:

○ Which services were involved?

○ If it was slow, who caused
that?

○ If failed, who actually failed?

@gamussa | #CodeOne | @ConfluentINc

Evolution of concurrency

@gamussa | #CodeOne | @ConfluentINc

Evolution of concurrency
● No Concurrency at all

○ Ex: Apache HTTP Server

@gamussa | #CodeOne | @ConfluentINc

Evolution of concurrency
● No Concurrency at all

○ Ex: Apache HTTP Server

● Basic Concurrency

○ Ex: Multi-threaded Applications

@gamussa | #CodeOne | @ConfluentINc

Evolution of concurrency
● No Concurrency at all

○ Ex: Apache HTTP Server

● Basic Concurrency

○ Ex: Multi-threaded Applications

● Async Concurrency

○ Ex: Actor-based Programming

@gamussa | #CodeOne | @ConfluentINc

Evolution of concurrency
● No Concurrency at all

○ Ex: Apache HTTP Server

● Basic Concurrency

○ Ex: Multi-threaded Applications

● Async Concurrency

○ Ex: Actor-based Programming

● Distributed Concurrency

○ Ex: μServices Architecture Style

@gamussa | #CodeOne | @ConfluentINc

Distributed tracing today

@gamussa | #CodeOne | @ConfluentINc

Distributed tracing today
● There are many distributed tracing

technologies available.

@gamussa | #CodeOne | @ConfluentINc

Distributed tracing today
● There are many distributed tracing

technologies available.

● Standards are getting created to
ensure a single programming
model for each μService.

@gamussa | #CodeOne | @ConfluentINc

Distributed tracing today
● There are many distributed tracing

technologies available.

● Standards are getting created to
ensure a single programming
model for each μService.

● Deployment mechanisms such as
Kubernetes are also taking care of
that automatically.

@gamussa | #CodeOne | @ConfluentINc

Distributed tracing today
● There are many distributed tracing

technologies available.

● Standards are getting created to
ensure a single programming
model for each μService.

● Deployment mechanisms such as
Kubernetes are also taking care of
that automatically.

● Network proxies such as Service
Meshes are also handling this.

@gamussa | #CodeOne | @ConfluentINc

Distributed tracing today
● There are many distributed tracing

technologies available.

● Standards are getting created to
ensure a single programming
model for each μService.

● Deployment mechanisms such as
Kubernetes are also taking care of
that automatically.

● Network proxies such as Service
Meshes are also handling this.

● OSS and proprietary options.

@gamussa | #CodeOne | @ConfluentINc

 23

@gamussa | #CodeOne | @ConfluentINc

 23

@gamussa | #CodeOne | @ConfluentINc

 23

@gamussa | #CodeOne | @ConfluentINc

 23

@gamussa | #CodeOne | @ConfluentINc

 23

@gamussa | #CodeOne | @ConfluentINc

 23

@gamussa | #CodeOne | @ConfluentINc

 23

@gamussa | #CodeOne | @ConfluentINc

 23

Trace that!

@gamussa | #CodeOne | @ConfluentINc

 24

@gamussa | #CodeOne | @ConfluentINc

Why trace apache kafka?

@gamussa | #CodeOne | @ConfluentINc

Why trace apache kafka?
● Apache Kafka is becoming the de-

facto standard to handle data.

@gamussa | #CodeOne | @ConfluentINc

Why trace apache kafka?
● Apache Kafka is becoming the de-

facto standard to handle data.

● Prediction? It will be the central
nervous system of any company.

@gamussa | #CodeOne | @ConfluentINc

Why trace apache kafka?
● Apache Kafka is becoming the de-

facto standard to handle data.

● Prediction? It will be the central
nervous system of any company.

● μServices in general already use
Kafka to exchange messages and
keep their data stores in-sync.

@gamussa | #CodeOne | @ConfluentINc

Why trace apache kafka?
● Apache Kafka is becoming the de-

facto standard to handle data.

● Prediction? It will be the central
nervous system of any company.

● μServices in general already use
Kafka to exchange messages and
keep their data stores in-sync.

● With event streaming becoming
even more popular, the Kafka
adoption tend to grow even more.

@gamussa | #CodeOne | @ConfluentINc

Why trace apache kafka?
● Apache Kafka is becoming the de-

facto standard to handle data.

● Prediction? It will be the central
nervous system of any company.

● μServices in general already use
Kafka to exchange messages and
keep their data stores in-sync.

● With event streaming becoming
even more popular, the Kafka
adoption tend to grow even more.

● Because it is so freaking cool!

@gamussa | #CodeOne | @ConfluentINc

 26

Distributed 
tracing in kafka

@gamussa | #CodeOne | @ConfluentINc

Opentracing java api

https://github.com/opentracing-contrib/java-
kafka-client

@gamussa | #CodeOne | @ConfluentINc

Opentracing java api
● Library written in Java to handle

distributed tracing via OpenTracing
compatible APIs.

https://github.com/opentracing-contrib/java-
kafka-client

@gamussa | #CodeOne | @ConfluentINc

Opentracing java api
● Library written in Java to handle

distributed tracing via OpenTracing
compatible APIs.

● Requires the creation of specific
tracer using the distributed tracing
technology API.

https://github.com/opentracing-contrib/java-
kafka-client

@gamussa | #CodeOne | @ConfluentINc

Opentracing java api
● Library written in Java to handle

distributed tracing via OpenTracing
compatible APIs.

● Requires the creation of specific
tracer using the distributed tracing
technology API.

● Uses the GlobalTracer utility class
to handle the tracer throughout the
JVM application.

https://github.com/opentracing-contrib/java-
kafka-client

@gamussa | #CodeOne | @ConfluentINc

Opentracing java api
● Library written in Java to handle

distributed tracing via OpenTracing
compatible APIs.

● Requires the creation of specific
tracer using the distributed tracing
technology API.

● Uses the GlobalTracer utility class
to handle the tracer throughout the
JVM application.

● Supports: Apache Kafka Clients,
Kafka Streams, and Spring Kafka.

https://github.com/opentracing-contrib/java-
kafka-client

@gamussa | #CodeOne | @ConfluentINc

Support for bundled jvms

https://github.com/riferrei/kafka-tracing-support

@gamussa | #CodeOne | @ConfluentINc

Support for bundled jvms
● Library written in Java that does the

automatic creation of the tracer.

https://github.com/riferrei/kafka-tracing-support

@gamussa | #CodeOne | @ConfluentINc

Support for bundled jvms
● Library written in Java that does the

automatic creation of the tracer.

● Implements the tracing logic using
the Kafka Interceptors API.

https://github.com/riferrei/kafka-tracing-support

@gamussa | #CodeOne | @ConfluentINc

Support for bundled jvms
● Library written in Java that does the

automatic creation of the tracer.

● Implements the tracing logic using
the Kafka Interceptors API.

● Allows different tracers to be used,
by using the TracerResolver class.

https://github.com/riferrei/kafka-tracing-support

@gamussa | #CodeOne | @ConfluentINc

Support for bundled jvms
● Library written in Java that does the

automatic creation of the tracer.

● Implements the tracing logic using
the Kafka Interceptors API.

● Allows different tracers to be used,
by using the TracerResolver class.

● Provides OOTB support for Jaeger.

https://github.com/riferrei/kafka-tracing-support

@gamussa | #CodeOne | @ConfluentINc

Support for bundled jvms
● Library written in Java that does the

automatic creation of the tracer.

● Implements the tracing logic using
the Kafka Interceptors API.

● Allows different tracers to be used,
by using the TracerResolver class.

● Provides OOTB support for Jaeger.

● Allows multiple services in the JVM
use their own tracer by specifying a
configuration properties file.

https://github.com/riferrei/kafka-tracing-support

@gamussa | #CodeOne | @ConfluentINc

Support for bundled jvms
● Library written in Java that does the

automatic creation of the tracer.

● Implements the tracing logic using
the Kafka Interceptors API.

● Allows different tracers to be used,
by using the TracerResolver class.

● Provides OOTB support for Jaeger.

● Allows multiple services in the JVM
use their own tracer by specifying a
configuration properties file.

○ export INTERCEPTORS_CONFIG_FILE=https://github.com/riferrei/kafka-tracing-support

@gamussa | #CodeOne | @ConfluentINc

 29

DEMO

 Gamov40
40% OFF*, duh!

*Standard Priced Conference pass

@@gamussa | #CodeOne | @ConfluentINc

https://slackpass.io/confluentcommunity

Thanks!
@gamussa
viktor@confluent.io

https://slackpass.io/confluentcommunity

 32

