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How did we do monitoring?

● Each system would have their very 
own monitoring system.

● Developers would not worry about 
monitoring. This was supposed to 
be “IT stuff”.

● Application was deemed OK if all 
systems were showing green.

● Different monitoring approaches 
were used throughout the entire IT 
stack portfolio, requiring many 
teams to be involved.
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WTF 🤬 System IS working!
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Intro to 
observability
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🤔

A raw sequence of 
events from a single 
instance of service



@gamussa   |   #CodeOne   |   @ConfluentINc 

 19



@gamussa   |   #CodeOne   |   @ConfluentINc 

 19



@gamussa   |   #CodeOne   |   @ConfluentINc 

 19

Metrics:  
numerical measures  

aggregated in given point of 
time
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Pillars of observability

● Distributed Tracing

● detailed execution of the 
causality-related activities 
performed by a given 
transaction. It answers:

○ Which services were involved?

○ If it was slow, who caused 
that?

○ If failed, who actually failed?
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Evolution of concurrency
● No Concurrency at all 

○ Ex: Apache HTTP Server

● Basic Concurrency 

○ Ex: Multi-threaded Applications

● Async Concurrency 

○ Ex: Actor-based Programming

● Distributed Concurrency 

○ Ex: μServices Architecture Style
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Distributed tracing today
● There are many distributed tracing 

technologies available.

● Standards are getting created to 
ensure a single programming 
model for each μService.

● Deployment mechanisms such as 
Kubernetes are also taking care of 
that automatically.

● Network proxies such as Service 
Meshes are also handling this.

● OSS and proprietary options.
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Trace that!
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Why trace apache kafka?
● Apache Kafka is becoming the de-

facto standard to handle data.

● Prediction? It will be the central 
nervous system of any company.

● μServices in general already use 
Kafka to exchange messages and 
keep their data stores in-sync.

● With event streaming becoming 
even more popular, the Kafka 
adoption tend to grow even more.

● Because it is so freaking cool!



@gamussa   |   #CodeOne   |   @ConfluentINc  

 26

Distributed 
tracing in kafka
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Opentracing java api
● Library written in Java to handle 

distributed tracing via OpenTracing 
compatible APIs.

● Requires the creation of specific 
tracer using the distributed tracing 
technology API.

● Uses the GlobalTracer utility class 
to handle the tracer throughout the 
JVM application.

● Supports: Apache Kafka Clients, 
Kafka Streams, and Spring Kafka.

https://github.com/opentracing-contrib/java-
kafka-client
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Support for bundled jvms
● Library written in Java that does the 

automatic creation of the tracer.

● Implements the tracing logic using 
the Kafka Interceptors API.

● Allows different tracers to be used, 
by using the TracerResolver class.

● Provides OOTB support for Jaeger.

● Allows multiple services in the JVM 
use their own tracer by specifying a 
configuration properties file.

○ export INTERCEPTORS_CONFIG_FILE=https://github.com/riferrei/kafka-tracing-support
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DEMO



 Gamov40
40% OFF*, duh!
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