

Pierre Zemb

@PierreZ

Software Engineer working on distributed systems

Aurélien Hébert

OBJ

@AurrelH95

Software Engineer and data lover

Horacio Gonzalez

@LostInBrittany

Spaniard lost in Brittany, developer, dreamer and all-around geek

HelloExoWorld

Looking for exoplanets in NASA datasets

HelloExoWorld

Once upon a time...

An amateur astronomer

Pierre Zemb, DevOps OVH

What not to do if you love astronomy

Live in Brest

Looking for solutions

Mixing passions

Google is your friend...

Report mappropriate prediction

Let's find a project

Exoplanets?

Planets orbiting stars far away

How do we find them?

The transit method seems the best

The transit method

Credits: NASA's Goddard Space Flight Center

How do we look for transits?

Image credits: NASA

Kepler

Watching the sky

By Carter Roberts [Public domain], via Wikimedia Commons

And what kind of data we get?

Pleiades By NASA, ESA, AURA/Caltech, Palomar Observatory. Via Wikimedia Common

Well, that's the problem

Seven stars, seven different profiles

Kinda big data

Q 3

17 7

Over 40 million light curves

Big AND open data

What describes you best?

Lots of datasets in #opendata

And we can help with that!

Let's use our tools to analyse the data

To analyse Kepler datasets

Kepler: spatial Time Series

Definition of Time Series:

A series of data points indexed in time order

- Stock Market Analysis
- Economic Forecasting
- Budgetary Analysis
- Process and Quality Control
- Workload Projections
- Census Analysis
- ...

Applications:

- Understanding the data
- Fit a model
 - Monitoring
 - Forecasting

Stock market Analytics Economic Forecasting

Study & Research

Many specific analytical tools:

- Moving average
- ARMA (AutoRegressive Moving Average)
- Multivariate ARMA models
- ARCH (AutoRegressive Conditional Heteroscedasticity)
- Dynamic time warping
- ...

Specific application of general tools

- Artificial neural networks
- Hidden Markov model
- Fourier & Wavelets transforms
- Entropy encoding
- ...

Dealing with Time Series

The 3 'v'

Monitoring OVH with Time Series

Metrics Data Platform

Some of Metrics' metrics:

- 1.5M datapoints/s, 24/7
- Peaks at ~10M datapoints/s
- 500M unique series

Tools to deal with Time Series

Many options

Metrics Data Platform

Metrics Data Platform

Why Warp 10?

Warp 10 is a software platform that

- Ingests and stores time series
- Manipulates and analyzes time series

Analytics is the key to success

Fetching data is only the tip of the iceberg

Manipulating Time Series with Warp 10

A true Time Series analysis toolbox

- Hundreds of functions
- Manipulation frameworks
- Analysis workflow

A match made in heaven

DEV TEST

Warp 10, OVH Metrics and HelloExoWorld

What we have done

- Downloaded and parsed 40 millions of FITS files
- Pushed it to OVH Metrics
- Select a cool subset as training set
- Verified we could find the same planets as NASA

A match made in heaven

DEV TEST

Warp 10, OVH Metrics and HelloExoWorld

What we have done

- Downloaded and parsed 40 millions of FITS files
- Pushed it to OVH Metrics
- Select a cool subset as training set
- Verified we could find the same planets as NASA

Let's get started!

1. Connect to https://bit.ly/2H7Z5b3

or

Connect to WIFI HEW-5G (or HEW)

- 2. Password is helloexoworld
- 3. Click on cancel on user password window
- 4. Open chrome/chromium on 192.168.1.2

Reach step 2.2 and enjoy!

What's next?

Where do we go from here?

Only the beginning

A growing team

And you!

Join us!

https://helloexo.world

https://xkcd.com/1371/

Metrics milestone

OVHSUMMIT

Thank you!

