
Dr Holly Cummins

Tooling Technical Lead

Java Technology Centre

IBM

cumminsh@uk.ibm.com

Java™ Performance Myths
 Myths, Mysteries, and Paradoxes

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Developing for performance
• Simple performance pitfalls
• Garbage collection
• Compilation
• Java performance

““““““IIIIII sssssshhhhhhoooooouuuuuulllllldddddd ttttttaaaaaakkkkkkeeeeee ppppppeeeeeerrrrrrforforforforforformmmmmmaaaaaannnnnncccccceeeeee aaaaaaddddddvvvvvviiiiiicccccceeeeee......””””””

• It seems natural for non-performance-experts
to follow the recommendations of
performance experts

• We've all read that X or Y is a best practice and
gone away and 'fixed' all our code

NoNoNoNoNoNo uuuuuunnnnnniiiiiivvvvvveeeeeerrrrrrssssssaaaaaallllll ppppppeeeeeerrrrrrffffffoooooorrrrrrmmmmmmaaaaaannnnnncccccceeeeee ttttttrrrrrruuuuuutttttthhhhhhssssss

• Every application is different
– Performance advice which was good a few years ago

may be bad now
– Performance advice which helps most applications

may hurt yours
– Virtual machine technologies change
– Hardware changes

• The only way to be sure is to measure
– Measure before
– Measure after

““““““IIIIII ccccccaaaaaannnnnn mmmmmmeeeeeeaaaaaassssssuuuuuurrrrrreeeeee ppppppeeeeeerrrrrrforforforforforformmmmmmaaaaaannnnnncccccceeeeee wwwwwwiiiiiitttttthhhhhhoooooouuuuuutttttt
ddddddeeeeeeffffffiiiiiinnnnnniiiiiinnnnnngggggg ppppppeeeeeerrrrrrffffffoooooorrrrrrmmmmmmaaaaaannnnnncccccceeeeee rrrrrreeeeeeqqqqqquuuuuuiiiiiirrrrrreeeeeemmmmmmeeeeeennnnnnttttttssssss””””””

• Tempting to use performance tools to try and
assess performance
– After all, they're called performance tools!
– Try and infer response times from GC pause times
– Try and infer throughput from GC overhead
– Try and infer throughput from profiles

PPPPPPeeeeeerrrrrrffffffoooooorrrrrrmmmmmmaaaaaannnnnncccccceeeeee mmmmmmeeeeeeaaaaaassssssuuuuuurrrrrreeeeeemmmmmmeeeeeennnnnntttttt mmmmmmuuuuuusssssstttttt bbbbbbeeeeee
bbbbbbaaaaaasssssseeeeeedddddd oooooonnnnnn ppppppeeeeeerrrrrrffffffoooooorrrrrrmmmmmmaaaaaannnnnncccccceeeeee ccccccrrrrrriiiiiitttttteeeeeerrrrrriiiiiiaaaaaa

• A performance tool cannot do your
performance measurement for you

• Performance measurement must be based on
your application and your quality of service
requirements
– Throughput
– Response times

• Mean response time
• 90th percentile response time
• Worst-case response time

““““““BBBBBBeeeeeennnnnncccccchhhhhhmmmmmmaaaaaarrrrrrkkkkkkssssss ccccccaaaaaannnnnn tttttteeeeeellllllllllll mmmmmmeeeeee hhhhhhoooooowwwwww ffffffaaaaaasssssstttttt mmmmmmyyyyyy
aaaaaapppppppppppplllllliiiiiiccccccaaaaaattttttiiiiiioooooonnnnnn wwwwwwiiiiiillllllllllll ggggggoooooo......””””””

• Sometimes measuring the performance of your
own application is difficult

• Benchmarks are designed to predict and
communicate performance

• It is therefore tempting to do some assess
performance against a benchmark instead of a
real application
– “Which JVM is fastest?”
– “Which garbage collection policy is fastest?”

BBBBBBeeeeeennnnnncccccchhhhhhmmmmmmaaaaaarrrrrrkkkkkkssssss ccccccaaaaaannnnnn bbbbbbeeeeee ddddddeeeeeecccccceeeeeeppppppttttttiiiiiivvvvvveeeeee

• Application performance is sensitive to many
factors
– Application load
– Object size
– Patterns of object access

• A change which improves the benchmark may
worsen the real application

• Benchmarks should not be used to guide
tuning decisions

““““““AAAAAA mmmmmmiiiiiiccccccrrrrrroooooo------bbbbbbeeeeeennnnnncccccchhhhhhmmmmmmaaaaaarrrrrrkkkkkk ccccccaaaaaannnnnn hhhhhheeeeeellllllpppppp mmmmmmeeeeee
cccccchhhhhhooooooososososososeeeeee tttttthhhhhheeeeee bbbbbbeeeeeesssssstttttt iiiiiimmmmmmpppppplllllleeeeeemmmmmmeeeeeennnnnnttttttaaaaaattttttiiiiiioooooonnnnnn””””””

• We often need to make performance decisions
– Should I use normal i/o or nio?
– “What's the impact of this coding style?”
– “Which JVM is fastest?”

• We learned from Myth 1 and will measure!
• We learned from Myth 2 and won't use a

benchmark!
• So in order to isolate other effects, we whip

up a little test application and compare

MMMMMMeeeeeeaaaaaassssssuuuuuurrrrrreeeeee wwwwwwhhhhhhaaaaaatttttt yyyyyyoooooouuuuuu rrrrrreeeeeeaaaaaallllllllllllyyyyyy ccccccaaaaaarrrrrreeeeee aaaaaabbbbbboooooouuuuuutttttt

• Isolating other effects isn't a good idea
– They're present in the actual application

• Performance is complex
– JIT
– GC
– Threading

• Micro-benchmarks often completely distort
the performance effects of these

• Measure your actual application, with a
realistic workload

““““““IIIIII sssssshhhhhhoooooouuuuuulllllldddddd ooooooppppppttttttiiiiiimmmmmmiiiiiisssssseeeeee tttttthhhhhhiiiiiinnnnnnggggggssssss......””””””

• We want things to go as fast as possible

• Seems obvious we should remove inefficiencies
when we see them

WWWWWWhhhhhheeeeeennnnnn ooooooppppppttttttiiiiiimmmmmmiiiiiissssssiiiiiinnnnnngggggg ddddddoeoeoeoeoeoessssssnnnnnn''''''tttttt ooooooppppppttttttiiiiiimmmmmmiiiiiisssssseeeeee

• Sometimes big differences make a small
difference

• Example:
– Method A: Uses 25% of time, 20% improvement

possible
– Method B: Uses 2% of time, 100% improvement

possible
– Fixing method A gives a 5% improvement, fixing

method B gives a 1% improvement.

WWWWWWhhhhhheeeeeennnnnn ooooooppppppttttttiiiiiimmmmmmiiiiiissssssiiiiiinnnnnngggggg rrrrrreeeeeeaaaaaallllllllllllyyyyyy ddddddooooooeeeeeessssssnnnnnn''''''tttttt
ooooooppppppttttttiiiiiimmmmmmiiiiiisssssseeeeee

• Sometimes something which is a performance
improvement in one version of an application
hurts performance in a later version of the
application
– Recall there are no universal performance truths

• Optimisation is best done late in the
development cycle

• “The First Rule of Program Optimization: Don't do it. The
Second Rule of Program Optimization (for experts only!): Don't
do it yet.”

• Michael A. Jackson

OOOOOOppppppttttttiiiiiimmmmmmiiiiiisssssseeeeee jjjjjjuuuuuuddddddiiiiiicccccciiiiiioooooouuuuuussssssllllllyyyyyy

• Optimised code is often less elegant
– Convoluted and unmaintainable
– Fragile

• Optimising is not worth the effort and risk if it
doesn't make a substantial difference

• “We should forget about small efficiencies,
say about 97% of the time: premature
optimization is the root of all evil.”

• Tony Hoare

““““““GGGGGGrrrrrreeeeeeaaaaaatttttt!!!!!! IIIIII''''''llllllllllll wwwwwwrrrrrriiiiiitttttteeeeee wwwwwwhhhhhhaaaaaatttttteeeeeevvvvvveeeeeerrrrrr IIIIII lllllliiiiiikkkkkkeeeeee aaaaaannnnnndddddd
ooooooppppppttttttiiiiiimmmmmmiiiiiisssssseeeeee aaaaaatttttt tttttthhhhhheeeeee eeeeeennnnnndddddd!!!!!!””””””

• If premature optimisation is to be avoided,
then does this mean performance doesn't have
to be considered at all until the end of the
development cycle?

WWWWWWeeeeee ssssssttttttiiiiiillllllllllll nnnnnneeeeeeeeeeeedddddd ttttttoooooo tttttthhhhhhiiiiiinnnnnnkkkkkk aaaaaabbbbbboooooouuuuuutttttt
ppppppeeeeeerrrrrrfofofofofoforrrrrrmmmmmmaaaaaannnnnncccccceeeeee aaaaaatttttt aaaaaallllllllllll ssssssttttttaaaaaaggggggeeeeeessssss

• Some inefficient constructs are repeated so
widely it's worth avoiding them if the
alternatives are just as clean
– Example: HashMap instead of HashTable

• Some operations (like I/O) are so often
performance bottlenecks their performance
should be considered in the design

• Fine-tuning pieces of code is not the same as
designing a scalable performant architecture
– Architecture is very difficult to change at the end

MMMMMMaaaaaakkkkkkeeeeee ppppppeeeeeerrrrrrforforforforforformmmmmmaaaaaannnnnncccccceeeeee ppppppaaaaaarrrrrrtttttt ooooooffffff tttttthhhhhheeeeee
pppppprrrrrroooooocccccceeeeeessssssssssss

• Set up agreed measures early
• Measure constantly to ensure that you're

roughly on track
• This will help avoid a last minute panic and

validate sound design

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Developing for performance
• Simple performance pitfalls
• Garbage collection
• Compilation
• Java performance

““““““MMMMMMeeeeeemmmmmmoooooorrrrrryyyyyy lllllleeeeeeaaaaaakkkkkkssssss aaaaaarrrrrreeeeee iiiiiimmmmmmppppppoooooossssssssssssiiiiiibbbbbblllllleeeeee iiiiiinnnnnn
JJJJJJaaaaaavvvvvvaaaaaa......””””””

• Memory leaks are very bad for performance
– Long running applications with memory leaks will

eventually crash
– Short-lived applications with memory leaks may still

suffer performance degradations
• Memory leaks the bane of C++ developer's

lives
• Isn't it nice Java doesn't have memory leaks?

MMMMMMeeeeeemmmmmmoooooorrrrrryyyyyy lllllleeeeeeaaaaaakkkkkkssssss iiiiiinnnnnn JJJJJJaaaaaavvvvvvaaaaaa

• Memory leaks happen when objects which are
no longer required still use up memory

• Two kinds of memory leak:
– Losing a reference to an object which is no longer in

use
– Holding on to a reference for an object which is no

longer in use
• Java's garbage collection eliminates the first

kind, but not the second

SSSSSSoooooolllllluuuuuuttttttiiiiiioooooonnnnnn:::::: ReReReReReReffffffeeeeeerrrrrreeeeeennnnnncccccceeeeee oooooobbbbbbjjjjjjeeeeeeccccccttttttssssss

• Garbage collection
– keeps objects which are still referenced
– collects objects which are no longer referenced

• Sometimes this isn't a sophisticated enough
semantics

• Java Reference objects allow conditional
collection

• An under-used but extremely useful feature of
Java

““““““TTTTTThhhhhheeeeee oooooorrrrrrddddddeeeeeerrrrrr iiiiiinnnnnn wwwwwwhhhhhhiiiiiicccccchhhhhh IIIIII ddddddoooooo tttttthhhhhhiiiiiinnnnnnggggggssssss
ddddddooooooeeeeeessssssnnnnnn''''''tttttt mmmmmmaaaaaatttttttttttteeeeeerrrrrr......””””””

• Intuitively, the performance of an algorithm
should depend on what operations are
performed and not on the order
– For example, array traversal

 for (row = 0; row < N; ++row) {
 for (col = 0; col < N; ++col) {

 sum += array[row][col];

– should be the same as
 for (col = 0; col < N; ++col) {

 for (row = 0; row < N; ++row) {

 sum += array[row][col];

•

• Memory access is very slow compared to
instruction processing

• CPU caches help address memory access
bottleneck
– Most modern systems have a hierarchy of caches of

increasing speed and decreasing size
– Access to objects already in the cache is far faster

than pulling an object into the cache
– One benchmark measurement reports 45% of CPU

cycles were spent stalled waiting for memory
requests (Ali-Reza, 2004)

WWWWWWhhhhhhaaaaaatttttt aaaaaa CCCCCCPPPPPPUUUUUU ccccccaaaaaacccccchhhhhheeeeee iiiiiissssss,,,,,, aaaaaannnnnndddddd wwwwwwhhhhhhyyyyyy ccccccaaaaaarrrrrreeeeee

TTTTTThhhhhheeeeee eeeeeeffffffffffffeeeeeecccccctttttt ooooooffffff hhhhhhaaaaaarrrrrrddddddwwwwwwaaaaaarrrrrreeeeee

• Mathematical assumptions about algorithm
performance ignores the impact of hardware

• Access to memory can be slow or fast
depending when it was last accessed

• Access to disk is almost always slow
• Try and traverse memory contiguously

– Go along rows before columns
• Avoid traversing memory repeatedly

– Example: calculate and cache the mean y when getMeanX()
is called to avoid calculating it when getMeanY() is called
two seconds later

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Developing for performance
• Simple performance pitfalls
• Garbage collection
• Compilation
• Java performance

• This is obviously true, isn't it?

““““““GGGGGGaaaaaarrrrrrbbbbbbaaaaaaggggggeeeeee ccccccoooooolllllllllllleeeeeeccccccttttttiiiiiioooooonnnnnn iiiiiissssss aaaaaallllllllllll aaaaaabbbbbboooooouuuuuutttttt
ccccccoooooolllllllllllleeeeeeccccccttttttiiiiiinnnnnngggggg ggggggaaaaaarrrrrrbbbbbbaaaaaaggggggeeeeee””””””

• Garbage collection is a shorthand for “Memory
management”
– More than just reclaiming unused memory

• Memory management includes
– freeing memory
– allocating memory
– arranging memory

• All of these are important and must be
considered when choosing and tuning garbage
collection policies

GGGGGGaaaaaarrrrrrbbbbbbaaaaaaggggggeeeeee ccccccoooooolllllllllllleeeeeeccccccttttttiiiiiioooooonnnnnn –––––– nnnnnnooooootttttt jjjjjjuuuuuusssssstttttt aaaaaabbbbbboooooouuuuuutttttt
ggggggaaaaaarrrrrrbbbbbbaaaaaaggggggeeeeee

• Garbage collection pauses are easily
identifiable pauses when the application
is prevented from doing 'real' work

• Garbage collection is often considered
to be a necessary evil of Java in which
performance is traded off against
coding ease

““““““MMMMMMyyyyyy aaaaaapppppppppppplllllliiiiiiccccccaaaaaattttttiiiiiioooooonnnnnn wwwwwwoooooouuuuuulllllldddddd ggggggoooooo ssssssoooooo mmmmmmuuuuuucccccchhhhhh
ffffffaaaaaasssssstttttteeeeeerrrrrr wwwwwwiiiiiitttttthhhhhhoooooouuuuuutttttt ggggggaaaaaarrrrrrbbbbbbaaaaaaggggggeeeeee ccccccoooooolllllllllllleeeeeeccccccttttttiiiiiioooooonnnnnn””””””

• GC can provide performance benefits
– Faster freeing of memory
– Faster memory allocation
– Faster memory access

• Demonstrated experimentally
– Detlefs, Dosser, and Zorn (1994) added GC to C

• Performance was 21% worse on average, but 9% better in the
best case

– Hertz and Berger (2005) took GC out of Java
• Performance was the same or sometimes worse by up to 9%

GGGGGGCCCCCC ccccccaaaaaannnnnn mmmmmmaaaaaakkkkkkeeeeee aaaaaapppppppppppplllllliiiiiiccccccaaaaaattttttiiiiiioooooonnnnnnssssss ggggggoooooo ffffffaaaaaasssssstttttteeeeeerrrrrr

““““““IIIIIInnnnnn CCCCCC,,,,,, IIIIII ccccccoooooouuuuuulllllldddddd ffffffrrrrrreeeeeeeeeeee mmmmmmeeeeeemmmmmmoooooorrrrrryyyyyy ffffffoooooorrrrrr frfrfrfrfrfreeeeeeeeeeee””””””

• C has no garbage collection pauses
• Freeing objects seems free unless detailed

profiling is done
• No pause time graph for C

• Even without garbage collection, freeing
memory takes time
– The cost of C free() calls ranges between a constant

cost of 8 instructions per call and a variable cost
with a mean of 113 instructions per object (Detlefs
1994)

– The mean malloc/free overhead in C applications
ranges between means of 7% and 20%, depending on
the allocator.

– For one application the overhead of malloc/free was
53%

FFFFFFrrrrrreeeeeeeeeeeeiiiiiinnnnnngggggg mmmmmmeeeeeemmmmmmoooooorrrrrryyyyyy mmmmmmaaaaaannnnnnuuuuuuaaaaaallllllllllllyyyyyy

• Some garbage collectors can free memory
much more quickly than free() can
– When well tuned, the cost of freeing with a copying

collector can be less than 1 instruction per object
• The reason is that for some collectors freeing

garbage is free and there is only a cost for
objects which survive

FFFFFFrrrrrreeeeeeeeeeeeiiiiiinnnnnngggggg mmmmmmeeeeeemmmmmmoooooorrrrrryyyyyy aaaaaauuuuuuttttttoooooommmmmmaaaaaattttttiiiiiiccccccaaaaaallllllllllllyyyyyy

• Allocating memory takes time
• Allocating memory is particularly slow when

– The heap is fragmented
– Multiple threads are contending for allocation locks on

the heap

AAAAAAllllllllllllooooooccccccaaaaaattttttiiiiiinnnnnngggggg mmmmmmeeeeeemmmmmmoooooorrrrrryyyyyy

• Garbage collection can help with both of these
problems
– Fragmentation

• Rearrange objects on contention to ensure no lengthy free-
list searches are required

– Contention
• Batch-allocates chunks of heap to threads so they don't have

to go back to the central allocator for each new request
(“thread local heaps”)

GGGGGGCCCCCC mmmmmmeeeeeeaaaaaannnnnnssssss ffffffaaaaaasssssstttttteeeeeerrrrrr oooooobbbbbbjjjjjjeeeeeecccccctttttt aaaaaallllllllllllooooooccccccaaaaaattttttiiiiiioooooonnnnnn

• Not all memory access is equally fast
• Garbage collection can speed up memory

access by rearranging objects in memory
• Since memory access is one of the main things

an application does, this can make a big
performance difference

AAAAAAcccccccccccceeeeeessssssssssssiiiiiinnnnnngggggg mmmmmmeeeeeemmmmmmoooooorrrrrryyyyyy

• When an object is loaded into the cache its
neighbours are also loaded into the cache

• This makes relative positions of objects
important to performance

• Spatial locality describes how spatially close
objects are to objects which are accessed at
similar times

• An application will go much faster if objects
which tend to be accessed around the same
time are located near one another

LLLLLLooooooccccccaaaaaalllllliiiiiittttttyyyyyy

IIIIIImmmmmmpppppprrrrrroooooovvvvvviiiiiinnnnnngggggg llllllooooooccccccaaaaaalllllliiiiiittttttyyyyyy

• Locality can be improved by
– Allocating in an unfragmented heap
– Compacting the heap
– Rearranging objects so they are near objects they

reference
• Garbage collection can help with all of these

DDDDDDiiiiiiggggggrrrrrreeeeeessssssssssssiiiiiioooooonnnnnn:::::: GGGGGGaaaaaarrrrrrbbbbbbaaaaaaggggggeeeeee ccccccoooooolllllllllllleeeeeeccccccttttttiiiiiioooooonnnnnn
ssssssttttttrrrrrraaaaaatttttteeeeeeggggggiiiiiieeeeeessssss

• Most JVMs provide several policies with
different collection strategies

• The default is not necessarily best in every
circumstance

• The strategies differ in the following:
– When and how is the work done?
– What happens to garbage?
– How is the heap laid out?

• Stop-the-world
– All application threads stopped during collection
– Most efficient

• Incremental
– Collections are divided into smaller partial ones
– Reduces application pauses

• Concurrent
– Collection appears to happen concurrently
– Often very very finely divided incremental
– Usually needs a brief stop-the-world pause to finish

up

WWWWWWhhhhhheeeeeennnnnn aaaaaannnnnndddddd hhhhhhowowowowowow wwwwwwoooooorrrrrrkkkkkk iiiiiissssss ddddddononononononeeeeee

• Free-list collectors
– The heap is searched for unreachable objects which

are added to a list of free space
– New objects are allocated from the free list
– When the heap becomes fragmented, it is

compacted by rearranging objects
• Copying collectors

– Reachable objects are copied to fresh heap
• What's left is garbage, so collecting garbage is free!

– Collecting non-garbage is not-free, especially for
large objects

WWWWWWhhhhhhaaaaaatttttt hhhhhhaaaaaappppppppppppeeeeeennnnnnssssss ttttttoooooo ggggggaaaaaarrrrrrbbbbbbaaaaaaggggggeeeeee

• Flat heap
– Everything is in one unstructured area

• Heap with large object area
– Huge objects are kept away from normal objects

• Large objects are expensive to allocate and compact

• Generational
– Divides the heap into generations

• Younger generations are collected more frequently
• If a copying collector is used, collecting the young generations

is very fast since collecting dead objects is free

HHHHHHoooooowwwwww tttttthhhhhheeeeee hhhhhheeeeeeaaaaaapppppp iiiiiissssss llllllaaaaaaiiiiiidddddd oooooouuuuuutttttt

• Garbage collection does work and causes
pauses and the pauses prevent applications
from doing work so the shorter the pauses the
better

• Many books recommend looking at GC
overhead and trying to reduce it

““““““IIIIII sssssshhhhhhoooooouuuuuulllllldddddd ttttttrrrrrryyyyyy aaaaaannnnnndddddd mmmmmmiiiiiinnnnnniiiiiimmmmmmiiiiiisssssseeeeee ttttttiiiiiimmmmmmeeeeee ssssssppppppeeeeeennnnnntttttt
iiiiiinnnnnn ggggggaaaaaarrrrrrbbbbbbaaaaaaggggggeeeeee ccccccoooooolllllllllllleeeeeeccccccttttttiiiiiioooooonnnnnn””””””

• Two kinds of garbage collection work
– Work done while the application is stopped
– Work done concurrently with an application

• Only the first kind is reported
• Concurrent work still impacts the application

– Most concurrent algorithms involve
• Extra work, such as write barriers
• Repeated work, when work is undone by application activity

and needs redoing

• Reported pause times are only a crude
indicator of the actual garbage collection load

ReReReReReReppppppoooooorrrrrrtttttteeeeeedddddd wwwwwwoooooorrrrrrkkkkkk aaaaaannnnnndddddd hhhhhhiiiiiiddddddddddddeeeeeennnnnn wwwwwwoooooorrrrrrkkkkkk

• Mean pauses can be short even when the total
pause is long, so looking at individual pauses is
not enough
– Shrinking the heap will generally shorten pause times
– However, collection will have to happen much more

frequently
– The total time will be higher and the application

performance will be worse

MMMMMMeeeeeeaaaaaannnnnn ppppppaaaaaauuuuuusssssseeeeee aaaaaannnnnndddddd ttttttoooooottttttaaaaaallllll ppppppaaaaaauuuuuusssssseeeeee

PPPPPPaaaaaauuuuuusssssseeeeeessssss ccccccaaaaaannnnnn mmmmmmaaaaaakkkkkkeeeeee tttttthhhhhhiiiiiinnnnnnggggggssssss ggggggoooooo ffffffaaaaaasssssstttttteeeeeerrrrrr
• Even if an application spends a lot of time

paused for GC, performance may be better
• Why?

– Garbage collection is not just garbage collection!
• Investing more time in collection can give big

wins for allocation and access
– Example: compacting the heap.

• Collectors which compact the heap frequently give longer
pauses, but allocation is much faster from a compacted heap and
object access is also likely to be faster

– Generational collectors usually have a higher overhead
even when they give better performance

• In some cases the application would go faster
if we could tolerate long pauses, but response
times are critical for my application so the
shorter the pause times, the better off I will be

““““““SSSSSShhhhhhoooooorrrrrrtttttt ppppppaaaaaauuuuuusssssseeeeee ttttttiiiiiimmmmmmeeeeeessssss mmmmmmeeeeeeaaaaaannnnnn ggggggoooooooooooodddddd
rrrrrreeeeeessssssppppppoooooonnnnnnsssssseeeeee ttttttiiiiiimmmmmmeeeeeessssss......””””””

• Response times are not the same as pause
times

• The two are often confused, even in academic
literature

ReReReReReRessssssppppppoooooonnnnnnsssssseeeeee ttttttiiiiiimmmmmmeeeeeessssss aaaaaannnnnndddddd ppppppaaaaaauuuuuusssssseeeeee ttttttiiiiiimmmmmmeeeeeessssss

QQQQQQuuuuuueeeeeeuuuuuueeeeeessssss,,,,,, TTTTTThhhhhhrrrrrroooooouuuuuugggggghhhhhhppppppuuuuuutttttt aaaaaannnnnndddddd RRRRRReeeeeessssssppppppoooooonnnnnnsssssseeeeee TTTTTTiiiiiimmmmmmeeeeeessssss

• Shop customers care how quickly they get
done, not how long cashier's breaks are
– Alice takes long breaks to get coffee but works

very quickly
– Bob takes short breaks to yawn but works slowly

• Which queue is better?
– If the supermarket is empty and you've just got a

basket, Bob is usually best
– If the supermarket is busy or you have a big trolley

• Alice will have a short queue
• Bob will have a long queue because he is slow

– Joining Bob's queue will mean a long wait

WWWWWWhhhhhhyyyyyy iiiiiissssss BBBBBBoooooobbbbbb SSSSSSlllllloooooowwwwww??????

• Bob could be slow for two reasons:
• Mean pause time isn't the same as total pause time

– If Bob yawns between every item, he will spend most of his
time not working even if each yawn only takes ten seconds

– Efficiency when not paused
– Bob only yawns as often as Alice goes for coffee
– But he is sluggish and sleepy and takes one minute to scan

each item
– Alice has had lots of coffee and takes five seconds
– Alice will spend a lot more time on break but get a lot more

done

• The application work is like the customers
queueing in the supermarket

• If an application has only a light workload, like an
interactive application, shorter pauses will give
better response times

• If an application has a heavy workload the
response time will be dominated by time in the
queue for the CPU and so the higher throughput
will give better mean response times

SSSSSSoooooo,,,,,, ffffffoooooorrrrrr ggggggaaaaaarrrrrrbbbbbbaaaaaaggggggeeeeee ccccccoooooolllllllllllleeeeeeccccccttttttiiiiiioooooonnnnnn ??????

““““““IIIIII sssssshhhhhhoooooouuuuuulllllldddddd hhhhhheeeeeellllllpppppp tttttthhhhhheeeeee ggggggaaaaaarrrrrrbbbbbbaaaaaaggggggeeeeee ccccccoooooolllllllllllleeeeeeccccccttttttoooooorrrrrr......””””””

• Example: nulling out objects
– Sometimes setting large objects to null when they're

no longer required can be beneficial
– But ...

• If objects need to be nulled out it's an indicator their scope is
wrong

• Using a finalizer to do the nulling is definitely not helpful to
the garbage collector!

– Yes, we've really seen this done as a performance
'improvement'

BBBBBBeeeeeeiiiiiinnnnnngggggg nnnnnnoooooorrrrrrmmmmmmaaaaaallllll

• The best way to help the garbage collector is
to code in a natural style

• Garbage collection algorithms are heavily
optimised for the most common scenarios
– Therefore being normal is good!

• Example: The weak generational hypothesis
– Founding assumption for all generational collectors:

• Most objects die young
• Few links from young objects to old objects

““““““IIIIII sssssshhhhhhoooooouuuuuulllllldddddd aaaaaavvvvvvooooooiiiiiidddddd ggggggeeeeeennnnnneeeeeerrrrrraaaaaattttttiiiiiinnnnnngggggg ggggggaaaaaarrrrrrbbbbbbaaaaaaggggggeeeeee......””””””

• If the garbage collector is a performance drain,
and making garbage causes the collector to
run more than it otherwise would, avoiding
generating garbage seems like a good idea.

• This leads to object pooling
– Object pooling is preserving and re-using object

instances

OOOOOObbbbbbjjjjjjeeeeeecccccctttttt ppppppoooooooooooollllllssssss:::::: tttttthhhhhheeeeee hhhhhhiiiiiiddddddddddddeeeeeennnnnn ccccccoooooossssssttttttssssss

• Extra implementation work
• Even more work required to count references

and make sure objects are not prematurely re-
used
– If this isn't done right then application behaviour can

be very incorrect indeed
• Badly tuned pool sizes cause unused instances

to hang around (a memory leak)

OOOOOObbbbbbjjjjjjeeeeeecccccctttttt ppppppoooooooooooollllllssssss aaaaaarrrrrreeeeee nnnnnnooooootttttt NoNoNoNoNoNorrrrrrmmmmmmaaaaaallllll

• Object pools totally break the weak
generational hypothesis
– Pools force objects to live much longer than their

natural lifespan
– Copying these objects is a big performance cost
– (But freeing and allocating them would have been

almost free)
• Object pools are unwise if the only resource

used by the pooled objects is memory

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Developing for performance
• Simple performance pitfalls
• Garbage collection
• Compilation
• Java performance

““““““IIIIII sssssshhhhhhoooooouuuuuulllllldddddd ccccccoooooommmmmmppppppiiiiiilllllleeeeee aaaaaahhhhhheeeeeeaaaaaadddddd------ooooooffffff------ttttttiiiiiimmmmmmeeeeee””””””

• Compiled languages run faster than
interpreted languages

• The JIT can take some time to compile
methods to the optimum level

• The JIT can introduce some delays while
compiling

• Easy to assume that platform portability is the
only reason to avoid pre-compiling

TTTTTThhhhhheeeeee ppppppoooooowwwwwweeeeeerrrrrr ooooooffffff ddddddyyyyyynnnnnnaaaaaammmmmmiiiiiicccccc ccccccoooooommmmmmppppppiiiiiillllllaaaaaattttttiiiiiioooooonnnnnn

• Dynamic compilation can make optimisations
not possible with static compilers
– Which branch is likely to be taken
– Whether an interface has multiple possible

implementations
– etc.

• Dynamic compilers can make optimisations for
the exact machine you're running on
– Example: Not all x86 machines are the same
– Dynamic compilation can take advantage of

machine-specific features

DDDDDDyyyyyynnnnnnaaaaaammmmmmiiiiiissssssmmmmmm aaaaaalllllllllllloooooowwwwwwssssss ccccccononononononddddddiiiiiittttttiiiiiioooooonnnnnnaaaaaallllll
ooooooppppppttttttiiiiiimmmmmmiiiiiissssssaaaaaattttttiiiiiioooooonnnnnnssssss

• Dynamic compilers can back out optimisations
if they become invalid
– Example: if an interface only has one implementation

it can be invoked much more quickly
• If another class which implements that interface is loaded,

affected code can be recompiled

– Example: code can be inlined (much faster to run)
even if a method isn't declared final

• If another class which subclasses the inlined method is loaded,
the method can be de-inlined

OOOOOOuuuuuuttttttlllllliiiiiinnnnnneeeeee

• Developing for performance
• Simple performance pitfalls
• Garbage collection
• Compilation
• Java performance

““““““JJJJJJaaaaaavvvvvvaaaaaa iiiiiissssss sssssslllllloooooowwwwww......””””””

• Common perception that Java trades speed for
safety
– C++ applications start faster
– Comparisons based on micro-benchmarks favour C

• Premise is that less low-level control always
means worse performance

JJJJJJaaaaaavvvvvvaaaaaa iiiiiissssss aaaaaaccccccttttttuuuuuuaaaaaallllllllllllyyyyyy vvvvvveeeeeerrrrrryyyyyy fafafafafafasssssstttttt

• Java used to be slow
– Then the JIT happened

• Micro-benchmarks are meaningless for general
performance discussions of large scale systems

• The JVM can do some very smart things with
the control you give it

• Just-In-Time compilation can produce more
optimum code than pre-compiled code

• Garbage collection can make applications run
faster than manual memory management

CCCCCCoooooonnnnnncccccclllllluuuuuussssssiiiiiioooooonnnnnnssssss

• Java performance is complex
– Java technology changes and machine technology

changes, so advice which was good five years ago
may be terrible now

– Java's dynamism means micro-benchmarks are very
poor predictors of enterprise application
performance

– The effect of garbage collection is much broader
than just the pauses in verbose GC

– Clear elegant code is likely to make sense to the VM
(as well as you!) and run very well

FFFFFFiiiiiinnnnnnaaaaaallllllllllllyyyyyy

• We've covered a lot of myths!
• You don't need to memorize each one
• When thinking about performance, focus on

the behaviour of your actual application
– Don't get distracted by following 'best

practices' (which may be outdated or just wrong)
unless you can see a real benefit

– Don't be obsessed by 'performance metrics' like GC
overhead since they may not be correlated to
application performance

� The following terms are trademarks of International Business
Machines Corporation in the United States, other countries, or
both:

– IBM
– z/OS

– PowerPC

– WebSphere
� Java and all Java-based trademarks are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.
� Solaris is a trademark of Sun Microsystems, Inc.
� Intel is a trademarks of Intel Corporation or its subsidiaries in the

United States, other countries, or both

AAAAAAnnnnnnyyyyyy qqqqqquuuuuueeeeeessssssttttttiiiiiioooooonnnnnnssssss??????

