
We solved
DevOps.
What’s next?

Baruch Sadogursky - @jbaruch
× Developer Productivity Advocate
× Gradle Inc
× Development -> DevOps -> #DPE

shownotes

× speaking.jbaru.ch
× Slides
× Video
× All the links!

A decade of DORA

x Deployment frequency

x Change lead time

x Change fail rate

x MTTR

Puppet dora report 2015

Accelerate Dora report 2018

Google cloud DORA report 2024

Cluster changes over time

We figured the
“devops” shit out.

Done.

Low performers over time

Medium Performers over time

High Performers over time

elite Performers over time

Why does lead time
decline?!

Dev

QA

DevOps

Ops

People

Tools

Process

DevOps

People

Tools

Process
Empowered

Teams

Productive
Tools

Productive
People

Productive
Process

DevOps

Kubernetes

?!?!

Production system
of your production

systems

The pain is real

Kubernetes

DevOps

Empowered
Teams

Developer
Productivity
Engineering

Developer productivity Engineering!

Developer Productivity Engineering
Foster Faster Feedback

Eliminate Toil for
Developers

Collaborate through
Effective Tooling

Prioritize Automation
and Eliminate
Bottlenecks

Embrace Rigorous
Observability for

Proactive Improvement

Dedicated
Organizational Mindset

Outcomes Over Output

Talk is cheap,
show me the
goods!

25

Small DPE improvements make a huge difference
× Generate code faster: Better IDE
× Test better: Testcontainers
× Enforce better code: Sonar
× Test more reliably: Flaky test detection
× Foster Faster Feedback:

feedback efficiency
× IDE: Sub-seconds (I type, it marks it red)
× Build: Seconds
× CI: Minutes
× Production: Hours/Days

Fe
ed

ba
ck

 T
im

e

Distance from Developers

Expected Real

IDE Build CI Production
Faster

Slower

Reverse dependency on distance from developers

It is slow!

It is slow and the developers have no idea why!

× Project setup
× Downloading the Internet
× Artifact generation: Compilation, packaging, etc
× Tests
× Artifact deployment

What is build?

× Project setup
× Downloading the Internet
× Artifact generation: Compilation, packaging, etc
× Tests
× Artifact deployment

What can go wrong?

At any time.

When can it go wrong?

The Build frustrates
the developers

Let’s ask Chatgpt

What the actual f*ck?!
× Skipping tests defeats the purpose of

the build!
× How about skipping compilation?
× We want faster feedback, not less

feedback

What
feedback do

we want?

Ci/cd pipeline quality gates

Non-
func

Non-
func

Non-
funcSecSecSecQualityQualityQualityBasicBasicBasic

It compiles Integration tests Linting Dependency scanning SAST/DAST Resource Utilization

Unit tests Code coverage Static code analysis Secrets scanning Load Testing Compliance

Two types of feedback

x e.g., CI/CD
x we never wait for it
x results are distracting

x e.g., build
x we’ll wait for it in the flow
x we’ll be pissed off when it’s slow

Fe
ed

ba
ck

 T
im

e

Distance from Developers

IDE Build CI Production
Faster

Slower

Reverse dependency on distance from developers

synchronous asynchronous

Commit time

Ideal build time feedback

Non-
func

Non-
func

Non-
funcSecSecSecQualityQualityQualityBasicBasicBasic

It compiles Integration tests Linting Dependency scanning SAST/DAST Resource Utilization

Unit tests Code coverage Static code analysis Secrets scanning Load Testing Compliance

Delightful build (pick two):

☑ provides max feedback
☑ fast

Skip what can
be skipped

(but no
more!)

Avoidance: Incremental build
× Don’t build what didn’t changed
× Don’t build what isn’t affected

Avoidance: Incremental build shortcomings
× Relies on produced artifacts
× Relies on architectural decisions

Avoidance: Caching
× Makes the build faster
× Makes the build faster for everybody
× Makes the build faster always
× Makes all parts of the build faster

Avoidance: Predictive test selection
× Learns code changes effects de-facto
× Skips tests with

high degree of confidence

How test prediction works
× Code changes and test

results are thrown into
learning model

× After a while, the model
predicts which changes
fail which tests

Test prediction

What changed
Where it changed

Correlate
with

observed
test

failures

Predictions
which

changes
will fail

which tests

Black magic in action
× The more tests a project

has, the less they break
× Refactorings in Java

break tests less than
in JavaScript

Speed up
what

can’t be
skipped

Test parallelization
× Use max power of local machine
× (Yes, your boss should buy you the

bleeding edge)

Test distribution
× CI uses fan-out to speed-up tests
× Shouldn’t you enjoy it for local tests?
× Use the cloud to distribute test load
× RUN ALL THE TESTS!

Why not just using ci fan-out?
× Relying on shared CI infrastructure
× CI infrastructure is not optimized for

real-time feedback!
× Are the agents as fast as they can

be?

Don’t let it slide

Observe and improve
× Measure local build times across

time and environments
× Detect downfacing trends
× Find root causes and improve

The gains are real!

Developer productivity is the next frontier
× We figured out (most of) DevOps
× If you want to excel in your production

environment, you know how
× But what about your path to production?
× There is work to be done there.
× DPE is the way to go!

Learn more and try it today!
× Take the Gradle/Maven Speed

Challenge!
× Be DPE Agent of Change!
× Read the DPE Handbook!
× Watch the DPE Summit keynotes!

x speaking.jbaru.ch

$500 off the Early

Bird pricing!

Use code dv5barw

THANKS!
Q&A and Twitter X/Bsky/Mastodon/LinkedIn ads:

x @jbaruch
x #DevOpsVision
x speaking.jbaru.ch

