
Road Trip Through
Database Country

 
 
 
 

Lorna Mitchell, IBM

Smile!

speak now, or forever hold your peace



Data is the lifeblood of our
applications, but we rarely study

it. Why?

@lornajane

Craftspeople

Choosing the right database is like choosing the other tool ingredients

Databases can do some heavy lifting and are optimised for specific things

I have some thoughts to share, that might inform you - and then you keep doing what you're doing



We rely on databases

@lornajane

Code not much use without data

No risks - hard to experiment if you think of only one DB or being all-in



Database Country

@lornajane

I work with lots of open source databases and it's super interesting! Let me show you around.



Relational Databases
Relational databases are brilliant if you need to
relate different bits of data to each other.
 
For example: Order data
 
They are also reliable places to put things,
implementing ACID compliance.
 
 

 

@lornajane

Example: orders, order_items and costs, customer information, billing/delivery info

Single large node (usually, maybe some read-only replicas)



ACID Compliance
• Atomicity
• Consistency
• Isolation
• Durability

@lornajane

Atomicity: transactions. Either it all happens, or none of it does

Consistency: the data will be valid when we're finished

Isolation: as each transaction happens, it is unaffected by other transactions

Durability: data won't be lost. Writing to disk is a really hard problem



Upfront schema planning is
required. Changing structure can

be painful.

@lornajane

Start with user story, what will be read/written? Then model

Normalising data is key to performance.  So is denormalising data.



PHP and MySQL: BFFs

@lornajane

Long-standing, nearly-monogamous relationship. Great pairing. Mysql nearly-open-source

Use PDO. Please! ORMs for RAD - helpful but horrible

Alternatives: PostgreSQL, Oracle, SQL Server, Amazon offerings

Postgres: More open source, more powerful, geo/time series plugins.

Postgres: CTEs, Window functions, JSON (all in new/soon MySQL). Choice for Node/Python



Life Advice: Learn SQL

@lornajane

Key skill.  Also: indexes, query optimisation

Relational databases can do a lot of work for us



Document Databases
• Schemaless, just add any JSON document
• Good to excellent performance
• Not usually ACID-compliant

 
For example: product catalog, CMS data
 
Speedy and distributed

 
 

@lornajane

Schemaless doesn't mean chaos, does mean easy schema changes

Distributed is the important thing here, fast

Rather than ACID, for document databases, we use BASE



BASE
• Basic Availability
• Soft-state
• Eventually consistent

@lornajane

Always available, distributed systems need to tolerate failure, no central node

Soft state: best data available, might be stale or approximate

Eventually consistent: data can be late but not lost (much faster than you'd think)



CAP Theorem for Distributed DBs
 

@lornajane

CAP says that given three things, you can choose up to two ..... wrong diagram



CAP Theorem for Distributed DBs
 

@lornajane

Document databases: they go for partition tolerance always

MongoDB: you get consistency, data will always be current/correct - and well-funded tools

CouchDB: you get availability, always get a response with some data -  and great replication features



Offline First
Common to see CouchDB in Progressive Web Apps because it
can replicate to PouchDB on the client side.
 

@lornajane

Progressive web apps, working with no data connection. Client side + background sync

CouchDB changes feed the source of all awesome. MongoDB has something too >3.6



PHP and Document Databases
Document databases are well-supported in PHP:
• MongoDB needs an extension and a Composer library
• CouchDB and RethinkDB can use Composer libraries

@lornajane

PHPCouchDB library is mine! CouchDB is just HTTP though



Special Mention: ElasticSearch
ElasticSearch is a Document Database
"You Know, for Search"
 
Duplicate data to it, use it for search

@lornajane

Brilliant for logs (ELK) and prose - think blisteringly fast free text search

ES understands other (spoken) languages



Data Warehouses
• As simple as a read-only database copy to

report against.
• May use specific tech, e.g. Hadoop, Apache

Spark
• Can serve as an archive to reduce load on the

production system.

 
 
 

@lornajane

Bring data here from many sources, perform aggregation on not-production platform



Graph Databases
Represent nodes and edges, with data attached.
 
For example: recommendations, actual route
planning

 
 
 

@lornajane

Pretty decent for all kinds of data storage!



Think of your data as nodes and
edges, with properties. What

questions will you need to
answer?

@lornajane



Redis
In-memory key/value store, with an excellent
grasp of data types.
 
For example: sessions, tracking the
most-viewed article today, caching (especially
calculated) stuff
 
Redis cluster is available for larger use cases

 
 

@lornajane

This should be called in-memory key/value store but Redis is just .... Redis! Like memcache, but better

Corner shop: pop there quickly for something small!



For Redis, performance and
persistence are inversely

correlated.

@lornajane



Redis Data Types
Redis supports (these and more):
• strings and numbers
• lists
• hashes
• sets and sorted sets

 
Also: simple Pub/Sub

@lornajane

Very fast, store state -serialised things. get, set and expires (at key level only)

Lists (actually linked lists) are like arrays of values but order matters. push, pop and range

Hashes are key/value pairs - a PHP associative array

Sets are collections of the same type of thing, e.g. tags

Sorted sets also have a score and are stored already sorted - leaderboards



Database Country

@lornajane

Some great tools. Try to only solve real problems, including scaling ones

Combine options: polyglot persistence. Datastores appropriate to each component, use kafka

Wider world: vault, columnar stores, time series ...



TL;DR Use PostgreSQL with Redis

@lornajane

Bunch of tools here, use the best tool for the job

Postgresql with plugins and redis covers almost everything, sorry to take a long route to this conclusion



Resources
https://www.ibm.com/cloud/data-management
https://en.wikipedia.org/wiki/CAP_theorem
http://lornajane.net
"7 Databases in 7 Weeks" Eric Redmond and Jim R Wilson
 
https://insights.stackoverflow.com/survey/2018/#technology-
most-loved-dreaded-and-wanted-databases

@lornajane

https://www.ibm.com/cloud/data-management
https://en.wikipedia.org/wiki/CAP_theorem
http://lornajane.net
https://insights.stackoverflow.com/survey/2018/#technology-most-loved-dreaded-and-wanted-databases
https://insights.stackoverflow.com/survey/2018/#technology-most-loved-dreaded-and-wanted-databases

	Database Country
	Relational Databases
	ACID Compliance
	Document Databases
	BASE
	CAP Theorem for Distributed DBs
	CAP Theorem for Distributed DBs
	Offline First
	PHP and Document Databases
	Special Mention: ElasticSearch
	Data Warehouses
	Graph Databases
	Redis
	Redis Data Types
	Database Country
	Resources

