
High-performing Engineering
Teams, and the Holy Grail







Jeremy Meiss
Director, DevRel &

CircleCI



So back to the tech industry…









Image: Consumer Choice Center



CI/CD Benchmarks for high-
performing teams

Duration Mean time to resolve Success rate Throughput





Duration
the foundation of software engineering velocity, measures the average

time in minutes required to move a unit of work through your pipeline









Duration Benchmark
<=10 minute builds

"a good rule of thumb is to keep your builds to no more than ten

minutes. Many developers who use CI follow the practice of not moving

on to the next task until their most recent check-in integrates

successfully. Therefore, builds taking longer than ten minutes can

interrupt their �ow."

– Paul M. Duvall (2007). Continuous Integration: Improving Software Quality and Reducing Risk



Duration: What the data shows

Benchmark: 5-10mins



Improving test coverage
Add unit, integration, UI, end-to-end testing across all app layers

Add code coverage into pipelines to identify inadequate testing

Include static and dynamic security scans to catch vulnerabilities

Incorporate TDD practices by writing tests during design phase





Mean time to Recovery
the average time required to go from a failed build signal to a successful

pipeline run





"A key part of doing a continuous build is that if the mainline build fails,

it needs to be �xed right away. The whole point of working with CI is that

you're always developing on a known stable base."

– Martin Fowler (2006). “Continuous Integration.” Web blog post. MartinFowler.com



MTTR Benchmark
<=60min MTTR on default branches



MTTR: What the data shows

Benchmark: 60 mins



Treat your default branch as the
lifeblood of your project



Getting to faster recovery times
Treat default branch as the lifeblood of your project

Set up instant alerts for failed builds (Slack, Pagerduty, etc.)

Write clear, informative error messages for your tests

SSH into the failed build machine to debug remote test env



Success rate
number of passing runs divided by the total number of runs over a

period of time



Failed signals are not all bad



Success rate benchmark
90%+ success rate on default branches



Success rate: What the data shows

Benchmark: 90%+ on default



Throughput
average number of work�ow runs that an organization completes on a

given project per day







Throughput benchmark



Throughput benchmark
It depends.



Throughput: What the data shows

Benchmark: at the speed of your business



Throughput is the most dependent on the other metrics





High-performing teams in 2023



The impact of Platform teams



Platform Teams, DevOps, and
YOU



No, DevOps is not dead





The Rise of Platform Teams





Platform Perspective: Duration
Identify and eliminate impediments to developer velocity

Set guardrails and enforce quality standards across projects

Standardize test suites & CI con�gs (shareable con�gs / policies)

Welcome failed pipelines, i.e. fast failure

Actively monitor, streamline, & parallelize pipelines across the org



Platform Perspective: MTTR
Ephasise value of deploy-ready, default branches

Set up e�ective monitoring & alerting systems, track recovery time

Limit frequency & severity of broken builds w/ role-based policies

Con�g- and Infrastructure-as-Code tools limit miscon�g potential

Actively monitor, streamline, & parallelize pipelines across the org



Platform Perspective: Success Rate
With low success rates, look at MTTR & shorten recovery time �rst

Set baseline success rate, aim for continuous improvement, look

for �aky tests or test coverage gaps

Be mindful of patterns & in�uence of external factors, i.e. decline

on Fridays, holidays, etc.



Platform Perspective: Throughput
Map goals to reality of internal & external business situations, i.e.

customer expectations, competitive landscape, codebase

complexity, etc.

Capture a baseline, monitor for deviations

Alleviate as much developer cognitive load from day-to-day work



2023 State of Software Delivery Report

go.jmeiss.me/SoSDR2023



Thank
You.

timeline.jerdog.me

@IAmJerdog

@jerdog

/in/jeremymeiss

@jerdog@hachyderm.io




