
AN OVERVIEW OF FRONT END
COMPONENT INTEGRATION
METHODS IN DRUPAL
Brian Perry
DrupalCamp Asheville – July 11, 2020

http://bit.ly/component-int

2

• Lead Front End Dev at Bounteous

• Rocking the Chicago ‘burbs

• Lover of all things components...

…and Nintendo

BRIAN PERRY

d.o: brianperry

twitter: bricomedy

github: backlineint

nintendo: wabrian

brianperryinteractive.com

3

2020, huh?
YIKES!

COMPONENTS!

6

What is it?

• Creating modular and re-usable elements

• Building a design system, not a series of pages

• Can use a pattern library for documentation and prototyping

• Tools like Pattern Lab and Storybook

COMPONENT BASED DEVELOPMENT

7

• Efficient re-use

• Write once, use everywhere.

• Within a single project and even across projects
(beyond Drupal even)

• Well isolated chunks of code

• Decoupling front and back end development

• Theming doesn’t have to come last

• Living Style Guide / Pattern Library

• Simplifies coordination between designers and
developers / developers and developers.

• Rapid prototyping

• Design system source of truth

COMPONENT BASED THEMING

Why Take a component-based approach?

OUR EXAMPLE COMPONENT

9

10

{{ title }}

{{ platform }}

{{ image }}

{{ body }}

{{ link }}

{{ year }}

11

12

13

GRID LAYOUT

14

COMPONENTS IN DRUPAL

16

• Live in the default template directory

• May not require any additional effort to get
data to display

Standard Drupal Components Integrated Drupal Components

• Live somewhere other than the default
templates directory

• Require some additional effort to get data to
display

• For this talk, I don’t really care how your
integrated components get into your theme.

• Could live in your theme

• Could be external dependency

WHERE DO MY COMPONENTS LIVE?

For the sake of this talk…

STANDARD DRUPAL COMPONENTS
Building components that live in the traditional templates directory

18

May be right for your team or project. No shame necessary.

• Build with Drupal (and only Drupal) in mind.

• Take advantage of things that can be re-used in Drupal

• Display modes

• Blocks

• Paragraphs

• Layouts

• Lose out on rapid prototyping advantages.

STANDARD DRUPAL COMPONENTS

19

STANDARD DRUPAL COMPONENT
{{ label }}

{{ content.field_platform }}

{{ content.field_image }}

{{ content.body }}

{{ url }}

{{ content.field_year }}

View mode: teaser

20

21

22

GRID LAYOUT

View: Games

23

INTEGRATED DRUPAL COMPONENTS
Building components that live outside of the traditional templates directory

25

COMPONENT LIBRARY / PATTERN LAB

26

Creates Twig namespaces to access templates in non-standard locations

COMPONENTS MODULE

27

• Includes:

• Mapping in Twig templates

• Preprocessing

• Themes and starter kits

• More likely to get out of sync with Drupal UI

• More likely to break things like caching, Drupal
functionality, etc.

Mapping Data In Code Mapping Data In Admin UI

• Includes:

• UI Patterns

• Layouts

• Less likely to disrupt Drupal functionality

• Potentially not as flexible

INTEGRATION APPROACHES

Primarily fall into two categories

MAPPING DATA IN CODE

29

INTEGRATING IN CODE
{{ label }}

{{ content.field_platform }}

{{ content.field_image }}

{{ content.body }}

{{ url }}

{{ content.field_year }}

View mode: teaser

30

Drupal template references template in component library

MAPPING IN TWIG PRESENTER TEMPLATE

32

Map in preprocess…

DATA MAPPING IN PREPROCESS

33

…and use simpler include in Twig presenter template

DATA MAPPING IN PREPROCESS

34

• Get Partial data from field render arrays

• field_label

• field_value

• field_raw

• field_target_entity

• Map just the data you want

• May require additional caching considerations…

Twig Field Value Twig Tweak

• Helpful twig functions and filters

• Render views, blocks, regions, fields, entities and
so on.

• Render image with specific image style

• Extract tokens from context

HELPER MODULES

Simplify Twig Mapping

35

• Simplify set up and provide default tooling

• Some provide default components and helper functions

• Various levels of opinionated

• Examples:

• Emulsify

• Gesso

• Shila

• Particle

STARTER KITS AND THEMES

36

• Same presenter templates

• Different component location

• Different component library tool

EMULSIFY DESIGN SYSTEM EXAMPLE

37

38

MAPPING DATA IN THE ADMIN UI

40

Define and manage components in a way that Drupal understands

• Define UI Patterns as Drupal Plugins

• Use defined patterns with component friendly modules

• Views, field groups, layout builder, display suite, paragraphs (requires field layout or display suite)

• Configure data mappings in the UI

• Optional Pattern Library page exposed in Drupal

• Also allows Drupal to:

• Preprocess patterns

• Render patterns programmatically

UI PATTERNS MODULE

41

{{ title }}

{{ platform }}

{{ image }}

{{ body }}

{{ link }}

{{ year }}

Pattern: container

42

43

44

45

UI PATTERNS VIEWS

46

47

LAYOUTS
{{ region: title }}

{{ region: platform }}

{{ region: image }}

{{ region: body }}

{{ region: link }}

{{ region: year }}

Layout: container

48

LAYOUTS AND LAYOUT BUILDER

49

LAYOUTS AND LAYOUT BUILDER

50

LAYOUTS AND LAYOUT BUILDER
Add ‘container’ section for teaser layout

51

Challenges:

• For full layout builder functionality, need to retain container and region attributes

• Need to be able to addClass and attributes functions in Pattern Library

• Some components might not be practical for visual field mapping

• Layout Builder UI introduces additional markup that may conflict with your component

LAYOUTS AND LAYOUT BUILDER

52

• Define component in code so that Drupal
becomes aware of it.

• Likely requires some amount of duplication
between Drupal and component library

Manual Definition Automatic Discovery

• Drupal module automatically discovers
components from component library and
makes them available to Drupal.

• Emerging/experimental concept.

• Expects a particular convention and thus won’t
work with all component libraries.

COMPONENT DEFINITION APPROACHES

AUTOMATIC DISCOVERY

54

• End result same as previous UI Patterns
Example

• No redundant ui_patterns.yml file necessary

• Some limitations

• Requires yml or json file with pattern data

• Requires specific approach to nested
components.

UI PATTERNS PATTERN LAB

Automatically create UI Patterns from your pattern library… really.

55

• No explicitly defined layout necessary

• Use with Layout Builder

• Can select default field wrappers or only
content (similar to UI Patterns)

• Early - many limitations

• Need to work around Pattern Lab 3 not
working with html.twig extension

• Open issues with Layout Builder
drag and drop.

LAYOUTS FROM PATTERN LAB

Automatically create Drupal Layouts from your pattern library… really.

56

Combines aspects of manual definition and automatic discovery

• Requires creating schema definition file (which
has potential applications outside of Drupal)

• Automatically derives blocks from pattern
library components

• Supports a specific set of field types

• Token support in D7 but not yet D8

PATTERNKIT

57

PATTERNKIT PATTERN DISCOVERY

58

59

PRE-PACKAGED COMPONENT SOLUTIONS

61

Ready to use web-components

• Full design system

• Selectively require components.

BOLT DESIGN SYSTEM

62

Component distribution system

• Combines a theme, Gulp workflow
and components.

• Download existing components or
create your own

• Not Composer / NPM driven

COMPONY

63

Drupal components with Vue style syntax

• Use like any template

• Automatically generates library definitions

• Derive Blocks and Layouts with Annotations

• Provides component library

• Doesn’t really solve
integration problem

• Does help with distribution
and re-use.

SINGLE FILE COMPONENTS

COMPONENT WORKFLOW
Present and Future

65

Leveraging a mix of approaches

• Integrated components in a custom theme

• Majority of twig/sass/js inside Pattern Library instance.

• Defining component mapping in Drupal UI for lightweight components

• Preprocess for components with heavy logic

• Created preprocess helper abstract class – hope to open source in future

• Project specific helper functions

• Build components compatible with Layout Builder

• Custom block types with limited use of Paragraphs

• Limited mapping in twig templates

CURRENT APPROACH(ES)

66

Basically React (or insert the name of your favorite JS framework here)

• Build fully packaged distributable components

• Easily install them

• npm install cool-component / composer require drupal/cool-component

• Import them in code

• import ‘CoolComponent’ from ‘cool-component’; / {% include ‘@components/cool-component.twig’ %}

• Use them as I see fit

• <CoolComponent />

DREAM WORKFLOW

67

We seem to have a lot of the pieces

• Make it easier to package, distribute and use individual components

• Track evolution of Web Components

• Improve UI based component configuration process in Drupal

• With specific focus on Layout Builder.

• Evolve approaches allowing Drupal to automatically discover components

• Keep building amazing looking component based sites using Drupal

HOW DO WE GET THERE?

Thanks to the many Drupal
component ecosystem
contributors!

69

FEEDBACK APPRECIATED

Q&A

Lead Front End Developer
Brian Perry

Email: brian.perry@bounteous.com

