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• Lead Front End Dev at Bounteous

• Rocking the Chicago ‘burbs

• Lover of all things components... 

…and Nintendo

BRIAN PERRY

d.o: brianperry

twitter: bricomedy

github: backlineint

nintendo: wabrian

brianperryinteractive.com
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2020, huh?
YIKES!



COMPONENTS!



6

What is it?

• Creating modular and re-usable elements

• Building a design system, not a series of pages

• Can use a pattern library for documentation and prototyping

• Tools like Pattern Lab and Storybook

COMPONENT BASED DEVELOPMENT
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• Efficient re-use

• Write once, use everywhere.

• Within a single project and even across projects 
(beyond Drupal even)

• Well isolated chunks of code

• Decoupling front and back end development

• Theming doesn’t have to come last

• Living Style Guide / Pattern Library

• Simplifies coordination between designers and 
developers / developers and developers.

• Rapid prototyping

• Design system source of truth

COMPONENT BASED THEMING

Why Take a component-based approach?



OUR EXAMPLE COMPONENT
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{{ title }}

{{ platform }}

{{ image }}

{{ body }}

{{ link }}

{{ year }}
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GRID LAYOUT
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COMPONENTS IN DRUPAL
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• Live in the default template directory

• May not require any additional effort to get 
data to display

Standard Drupal Components Integrated Drupal Components

• Live somewhere other than the default 
templates directory

• Require some additional effort to get data to 
display

• For this talk, I don’t really care how your 
integrated components get into your theme. 

• Could live in your theme

• Could be external dependency

WHERE DO MY COMPONENTS LIVE?

For the sake of this talk…



STANDARD DRUPAL COMPONENTS
Building components that live in the traditional templates directory 
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May be right for your team or project. No shame necessary.

• Build with Drupal (and only Drupal) in mind.

• Take advantage of things that can be re-used in Drupal

• Display modes

• Blocks

• Paragraphs

• Layouts

• Lose out on rapid prototyping advantages.

STANDARD DRUPAL COMPONENTS
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STANDARD DRUPAL COMPONENT
{{ label }}

{{ content.field_platform }}

{{ content.field_image }}

{{ content.body }}

{{ url }}

{{ content.field_year }}

View mode: teaser
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GRID LAYOUT

View: Games
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INTEGRATED DRUPAL COMPONENTS
Building components that live outside of the traditional templates directory
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COMPONENT LIBRARY / PATTERN LAB
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Creates Twig namespaces to access templates in non-standard locations

COMPONENTS MODULE
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• Includes:

• Mapping in Twig templates

• Preprocessing

• Themes and starter kits

• More likely to get out of sync with Drupal UI 

• More likely to break things like caching, Drupal 
functionality, etc.

Mapping Data In Code Mapping Data In Admin UI

• Includes:

• UI Patterns

• Layouts

• Less likely to disrupt Drupal functionality

• Potentially not as flexible

INTEGRATION APPROACHES

Primarily fall into two categories



MAPPING DATA IN CODE
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INTEGRATING IN CODE
{{ label }}

{{ content.field_platform }}

{{ content.field_image }}

{{ content.body }}

{{ url }}

{{ content.field_year }}

View mode: teaser
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Drupal template references template in component library

MAPPING IN TWIG PRESENTER TEMPLATE
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Map in preprocess…

DATA MAPPING IN PREPROCESS
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…and use simpler include in Twig presenter template

DATA MAPPING IN PREPROCESS
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• Get Partial data from field render arrays

• field_label

• field_value

• field_raw

• field_target_entity

• Map just the data you want

• May require additional caching considerations…

Twig Field Value Twig Tweak

• Helpful twig functions and filters

• Render views, blocks, regions, fields, entities and 
so on.

• Render image with specific image style

• Extract tokens from context

HELPER MODULES

Simplify Twig Mapping
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• Simplify set up and provide default tooling

• Some provide default components and helper functions

• Various levels of opinionated

• Examples:

• Emulsify

• Gesso

• Shila

• Particle 

STARTER KITS AND THEMES
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• Same presenter templates

• Different component location

• Different component library tool

EMULSIFY DESIGN SYSTEM EXAMPLE
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MAPPING DATA IN THE ADMIN UI
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Define and manage components in a way that Drupal understands

• Define UI Patterns as Drupal Plugins

• Use defined patterns with component friendly modules

• Views, field groups, layout builder, display suite, paragraphs (requires field layout or display suite)

• Configure data mappings in the UI

• Optional Pattern Library page exposed in Drupal

• Also allows Drupal to:

• Preprocess patterns

• Render patterns programmatically 

UI PATTERNS MODULE
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{{ title }}

{{ platform }}

{{ image }}

{{ body }}

{{ link }}

{{ year }}

Pattern: container
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UI PATTERNS VIEWS
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LAYOUTS
{{ region: title }}

{{ region: platform }}

{{ region: image }}

{{ region: body }}

{{ region: link  }}

{{ region: year }}

Layout: container
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LAYOUTS AND LAYOUT BUILDER
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LAYOUTS AND LAYOUT BUILDER
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LAYOUTS AND LAYOUT BUILDER
Add ‘container’ section for teaser layout
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Challenges:

• For full layout builder functionality, need to retain container and region attributes

• Need to be able to addClass and attributes functions in Pattern Library

• Some components might not be practical for visual field mapping

• Layout Builder UI introduces additional markup that may conflict with your component

LAYOUTS AND LAYOUT BUILDER
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• Define component in code so that Drupal 
becomes aware of it.

• Likely requires some amount of duplication 
between Drupal and component library

Manual Definition Automatic Discovery

• Drupal module automatically discovers 
components from component library and 
makes them available to Drupal.

• Emerging/experimental concept.

• Expects a particular convention and thus won’t 
work with all component libraries.

COMPONENT DEFINITION APPROACHES



AUTOMATIC DISCOVERY



54

• End result same as previous UI Patterns 
Example

• No redundant ui_patterns.yml file necessary

• Some limitations

• Requires yml or json file with pattern data

• Requires specific approach to nested
components.

UI PATTERNS PATTERN LAB

Automatically create UI Patterns from your pattern library… really.
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• No explicitly defined layout necessary

• Use with Layout Builder

• Can select default field wrappers or only 
content (similar to UI Patterns)

• Early - many limitations

• Need to work around Pattern Lab 3 not
working with html.twig extension

• Open issues with Layout Builder
drag and drop.

LAYOUTS FROM PATTERN LAB

Automatically create Drupal Layouts from your pattern library… really.
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Combines aspects of manual definition and automatic discovery

• Requires creating schema definition file (which 
has potential applications outside of Drupal)

• Automatically derives blocks from pattern
library components

• Supports a specific set of field types

• Token support in D7 but not yet D8

PATTERNKIT
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PATTERNKIT PATTERN DISCOVERY
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PRE-PACKAGED COMPONENT SOLUTIONS
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Ready to use web-components

• Full design system

• Selectively require components.

BOLT DESIGN SYSTEM
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Component distribution system

• Combines a theme, Gulp workflow 
and components.

• Download existing components or 
create your own

• Not Composer / NPM driven

COMPONY
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Drupal components with Vue style syntax

• Use like any template

• Automatically generates library definitions

• Derive Blocks and Layouts with Annotations

• Provides component library

• Doesn’t really solve
integration problem

• Does help with distribution
and re-use.

SINGLE FILE COMPONENTS



COMPONENT WORKFLOW
Present and Future
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Leveraging a mix of approaches

• Integrated components in a custom theme

• Majority of twig/sass/js inside Pattern Library instance.

• Defining component mapping in Drupal UI for lightweight components

• Preprocess for components with heavy logic

• Created preprocess helper abstract class – hope to open source in future

• Project specific helper functions

• Build components compatible with Layout Builder

• Custom block types with limited use of Paragraphs

• Limited mapping in twig templates

CURRENT APPROACH(ES)
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Basically React (or insert the name of your favorite JS framework here)

• Build fully packaged distributable components

• Easily install them

• npm install cool-component / composer require drupal/cool-component

• Import them in code

• import ‘CoolComponent’ from ‘cool-component’; / {% include ‘@components/cool-component.twig’ %}

• Use them as I see fit

• <CoolComponent />

DREAM WORKFLOW
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We seem to have a lot of the pieces 

• Make it easier to package, distribute and use individual components

• Track evolution of Web Components

• Improve UI based component configuration process in Drupal

• With specific focus on Layout Builder.

• Evolve approaches allowing Drupal to automatically discover components

• Keep building amazing looking component based sites using Drupal

HOW DO WE GET THERE?



Thanks to the many Drupal 
component ecosystem 
contributors!
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FEEDBACK APPRECIATED



Q&A

Lead Front End Developer
Brian Perry

Email: brian.perry@bounteous.com


