

Modular
architecture

Modular architecture

Classes and
components

Modular architecture
classes and

Components
and modifiers

Modular architecture
classes and

Components,
modifiers

and overrides

Modular architecture
classes,

modifiers
and overrides

Components,  
patterns and sh*t it’s

hard to deal with

@cedmax

Webmaster
before it was cool

 
Tech Lead  

Condé Nast International

Components, 
patterns and sh*t
it’s hard to deal with

or… How I came up with a good use of quotes from Lost in Translation

Components, 
patterns and sh*t
it’s hard to deal with

Basically
Lost in Translation?

“This movie is an hour and some
odd minutes of my life I will never
get back.”

JoeB. on Metacritic

Disclaimer

“Meaning is complex and often gets
lost in translation. Everybody has
their own mental model of things”

Alla Kholmatova

Lost in Translation

Modular design

2013 - 2015

Atomic design
Brad Frost · October 2013

Web components
announced in November 2011

Pattern Library

“Pattern libraries are something I do
a lot for client projects. […] It’s a
technique I first saw […] Natalie Downe
develop for client projects back in
2009”

 Anna Debenham

MISSING SLIDE* ABOUT
PATTERN LIBRARIES

* on purpose, I promise

Pattern Library

“Pattern libraries are something I do
a lot for client projects. […] It’s a
technique I first saw […] Natalie Downe
develop for client projects back in
2009”

 Anna Debenham

ReactJS
First release: March 2013

Where are we at, today?

Basically
Frame the issue

It's not that simple

“When you actually try to apply a
modular approach to your day to
day work, it isn’t really that simple”

Alla Kholmatova · June 2015

The issue

The issue

How do we manage our code, to
re-use patterns without making
them too rigid for the day to day
activities?

The issue

How do we manage our code, to re-use
patterns without making them too rigid for the
day to day activities?

 
How do we re-use our patterns in
slightly different use cases?

Wish I could sleep

It’s NOT about any specific tech stack or module
implementation: most of the patterns can be

applied with BEM, styled components, css
modules… * 

 
It’s about modularity at its core  

 
It’s about modules responsibilities 

 
It’s about maintainability  

(among other coding practices)

Classname  
injection

I'll be in the bar for the rest of the week

<IconButton
 className="content-actions__button"
 iconId="close"
/>

<IconButton
 className="content-actions__button"
 iconId="close"
/>

//_content-actions.scss
.content-actions {
 //[...]
 &__button {
 flex: 1 0 auto;
 padding: 1rem;
 line-height: 1.5;

 &:hover, &:focus {
 background: $grey-1;
 }

 &:active {
 background: $grey-2;
 }
 }
}

//_content-actions.scss
.content-actions {
 //[...]
 &__button {
 flex: 1 0 auto;
 padding: 1rem;
 line-height: 1.5;

 &:hover, &:focus {
 background: $grey-1;
 }

 &:active {
 background: $grey-2;
 }
 }
}

//_content-actions.scss
.content-actions {
 //[...]
 &__button {
 flex: 1 0 auto;
 padding: 1rem;
 line-height: 1.5;

 &:hover, &:focus {
 background: $grey-1;
 }

 &:active {
 background: $grey-2;
 }
 }
}

What's the effect on
the base button?

//_content-actions.scss
.content-actions {
 //[...]
 &__button {
 flex: 1 0 auto;
 padding: 1rem;
 line-height: 1.5;

 &:hover, &:focus {
 background: $grey-1;
 }

 &:active {
 background: $grey-2;
 }
 }
}

Why is this button
different from the

pattern library ones?

This is the most flexible way to extend
anything.

What works

What really doesn't

1. The default style could be overridden
in unexpected ways.

2. We are creating many variants of the
original patterns.

- You're too tall. 
- Anybody ever tell you you may be too small?

Ad hoc
modifiers

<Dialog
 className="dialog--user-intent">
 <!-- [...] -->
</Dialog>

<Dialog
 className="dialog--user-intent">
 <!-- [...] -->
</Dialog>

//_dialog.scss
.dialog {
 //[...]

 &--user-intent {
 width: 43.75rem;
 height: auto;
 }
}

//_dialog.scss
.dialog {
 //[...]

 &--user-intent {
 width: 43.75rem;
 height: auto;
 }
}

//_dialog.scss
.dialog {
 //[...]

 &--wizard {
 width: 43.75rem;
 height: 35rem;
 }

 &--game-intent {
 width: 43.75rem;
 height: auto;
 }

 &--save-results {
 width: 23.75rem;
 height: auto;
 }
}

How many variants do
we have to account for?

This practice allows for flexibility, giving
a reasonable control and keeping all
the variants in proximity.

What works

What really doesn't

1. The generic component style have
knowledge of specific
implementations.

2. The file size might be effected by
unused code.

3. It doesn't scale

Specialised
patterns

I'm special

<Dialog
 className="dialog--prompt">
 <!-- [...] -->
</Dialog>

<Dialog
 className="dialog--prompt">
 <!-- [...] -->
</Dialog>

//_dialog.scss
.dialog {
 //[...]

 &--prompt {
 display: block;
 overflow: hidden;
 max-width: map-get($dialog-prompt, max-width);
 height: auto;
 margin: map-get($dialog-prompt, margin);
 padding: 2rem 0 0;
 border-radius: 3px;
 }
}

//_dialog.scss
.dialog {
 //[...]

 &--prompt {
 display: block;
 overflow: hidden;
 max-width: map-get($dialog-prompt, max-width);
 height: auto;
 margin: map-get($dialog-prompt, margin);
 padding: 2rem 0 0;
 border-radius: 3px;
 }
}

The semantic value  
of the modifiers is
different from the  

ad-hoc ones.

The patterns are at the centre: no
special cases, but pre-defined flavours
of the basic components.

What works

What really doesn't

1. It might drive to preemptive abstraction

2. It does account for a finite number of
use cases

<Dialog
 type="prompt" />

<Dialog
 className="dialog--prompt">
 <!-- [...] -->
</Dialog>

<DialogPrompt />

I still wish I could sleep

A no go: it defies
the point of having
a pattern library

A code smell, it's an
hack and it should
be treated like one

The best approach,
even though
sometimes

Classname  
injection

Ad hoc
modifiers

Specialised
patterns

Basically
I'm stuck

It's not that simple

“It isn’t really that simple”
Alla Kholmatova · June 2015

The issue

How do we re-use our patterns in
slightly different use cases?

What am I trying
to solve?

Arrangement
within parent
components

<div
 className="game-intent__dialog">
 <Dialog>
 <!-- [...] -->
 </Dialog>
</div>

<div
 className="game-intent__dialog">
 <Dialog>
 <!-- [...] -->
 </Dialog>
</div>

//_dialog.scss
.dialog {
 width: 100%;
 height: 100%;

 //[...]
}

//_game-intent.scss
.game-intent {
 //[...]

 &__dialog {
 width: 43.75rem;
 height: auto;
 }
}

//_dialog.scss
.dialog {
 width: 100%;
 height: 100%;

 //[...]
}

//_game-intent.scss
.game-intent {
 //[...]

 &__dialog {
 width: 43.75rem;
 height: auto;
 }
}

Each component has its
own responsibility

This practices defines responsibilities
in a neat way and it enables for
specific implementations without
invalidating patterns.

What works

<div
 className="custom-class">
 <Dialog>
 <!-- [...] -->
 </Dialog>
</div>

<Dialog
 className="custom-class">
 <!-- [...] -->
</Dialog>

What really doesn't

Potentially you might need a wrapper
HTML element that could have been
avoided.

Space in
relation to other

components

<Dialog
 className="space-max inner-space-min">
 <!-- [...] -->
</Dialog>

<Dialog
 className="space-max inner-space-min">
 <!-- [...] -->
</Dialog>

It reduces the need to come up with
new class names and it moves the
conversation regarding component
relationships back to the pattern library.

What works

What really doesn't

1. The positional classes might get stale if
not codified properly in the pattern lib.

2. The flexibility of the helper classes is
limited

3. Do you like atomic css? https://acss.io/

<Dialog
 className="M(defSpace) P(defSpace)">
 <!-- [...] -->
</Dialog>

"Open"
components

//_question-content-block.scss
.question-content-block {
 //[...]
 &__icon-button {
 //[...]

 .icon {
 width: $content-block-icon-large-size;
 height: $content-block-icon-large-size;
 }
}

//_question-content-block.scss
.question-content-block {
 //[...]
 &__icon-button {
 //[...]

 .icon {
 width: $content-block-icon-large-size;
 height: $content-block-icon-large-size;
 }
}

//_question-content-block.scss
.question-content-block {
 //[...]
 &__icon-button {
 //[...]

 @include icon-size($content-block-icon-medium-size);
 }
}

//_icon.scss
@mixin icon-size($size) {
 .icon {
 width: $size;
 height: $size;
 }
}

//_question-content-block.scss
.question-content-block {
 //[...]
 &__icon-button {
 //[...]

 @include icon-size($content-block-icon-medium-size);
 }
}

//_icon.scss
@mixin icon-size($size) {
 .icon {
 width: $size;
 height: $size;
 }
}

//_question-content-block.scss
.question-content-block {
 //[...]
 &__icon-button {
 //[...]

 @include icon-size($content-block-icon-medium-size);
 }
}

//_icon.scss
@mixin icon-size($size) {
 .icon {
 width: $size;
 height: $size;
 }
}

The responsibility of
being flexible it back to
the component itself

<Icon size={32} />

1. Every base component can be as flexible
as it defines itself to be.

2. Developers always have control on what
they expose.

What works

What really doesn't

1. This technique involves more
complexity in thinking about the
components

2. It's a slippery slope

3. How does an "open" component fit in
the patterns?

Basically
Does it get easier?

The more you know who you are and what
you want, the less you let things upset you

I just don't know what I'm supposed to be

“A common language is
a first step towards
communication across
cultural boundaries. ”

Ethan Zuckerman

The issue

How to understand - and convey -
the meaning of an exception in our
patterns?

Learn what the pattern your  
are building is supposed to be

Get involved early

Talk to people

and remember that…

marco@fromthefront.it
http://cedmax.com
@cedmax

You are not hopeless

