
APPLICATION
SECURITY TESTING

WHO AM I
Anant Shrivastava
Specialize in Web, Mobile and Linux Servers
SANS GWAPT, RHCE, CEH
Co-Author OWASP Testing Guide
Project Lead

Android Tamer
CodeVigilant

WHO ARE YOU
Names or Nicknames
What's your comfort level with HTML5
What do you expect from This course

DAY 1
Understand the latest buzzwords in HTML5

CORS
JSON
Newer HTML5 tags
Local Storage and WebSQL
DOM
webworker
Web API’s
WebSockets
iframe Sandboxing

Understand the general use cases around all HTML5 technologies.

DAY 1
HANDS ON

Write simple HTML5 based app/pages covering most of the above listed
concepts.
This will allow participants to understand how technology is working and clear
out the development related queries.

BASIC CONCEPTS

HTML 5
Created by Web Hypertext Application Technology Working Group (WHATWG)
and W3C
Next generation of HTML (now current generation)
On 28 October 2014, HTML5 was released as a stable W3C Recommendation
Limelight Point: Can eliminate flash from web
Main attraction being interactive

NEW FEATURES OF HTML 5
To understand this we will start with writing our own HTML5 pages.

P.S.: The whole presentation is running on a HTML5 based framework.

CORS
Cross origin resources sharing

Will be covered in detail tomorrow when we play with it fully.

CORS OVERVIEW

WHAT IS ORIGIN
http://127.0.0.1/index.html
https://127.0.0.1/index.html
http://127.0.0.1:8080/index.html
http://127.0.0.1/testapp/index.html
http://127.0.0.1:8080/testapp/index.html

http://127.0.0.1:8080/testapp/index.html
http://127.0.0.1/index.html
http://127.0.0.1:8080/index.html
https://127.0.0.1/index.html
http://127.0.0.1/testapp/index.html

PURPOSE
Relax Same Origin Policies
HTTP HEADER Access-Control-Allow-Origin or *
Example

OPTIONS /usermail HTTP/1.1
Origin: mail.example.com
Content-Type: text/html

HTTP/1.0 200 OK
Access-Control-Allow-Origin: http://www.example.com, https://login.example.com
Access-Control-Allow-Methods: POST, GET, OPTIONS
Access-Control-Allow-Headers: X-Prototype-Version, X-Requested-With, Content-Type, A
ccept
Access-Control-Max-Age: 86400 Content-Type: text/html; charset=US-ASCII Connection:
keep-alive
Content-Length: 0

JSON
JAVASCRIPT OBJECT NOTATION

To be discussed in details when we do XHR and CORS tomorrow

HTML TAGS
Many new tags added, many old tags updated

OLD
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http:////www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

NEW

<!DOCTYPE html>

OLD

<p>Image of Mars. </p>

NEW
<figure>

 <figcaption>
 <p>This is an image of something interesting. </p>
 </figcaption>
</figure>

OLD
<link rel="stylesheet" href="path/to/stylesheet.css" type="text/css" />
<script type="text/javascript" src="path/to/script.js"></script>

NEW
<link rel="stylesheet" href="path/to/stylesheet.css" />
<script src="path/to/script.js"></script>

NEW
elements such as

Header
footer
article

Mainly cosmetic / flow element

HTML ELEMENTS

CONTENTEDITABLE
<ul contenteditable=true>
List item 1

List item 1

INPUT TYPE
<form action="" method="get">
 <label for="email">Email:</label>
 <input id="email" name="email" type="email" />
 <input id="date" name="date" type="date" />
 <button type="submit"> Submit Form </button>
 </form>

Email:
Date: dd/mm/yyyy Submit Form

VARIOUS TYPES DEFINED

tel
search
email
number
range
date
month
time
url
pattern="[a-z]{3}[0-9]{3}" : 3 alphabet and 3 number

PLACEHOLDER
<input name="email" type="email" placeholder="username@website.com" />

username@website.com

MORE API'S

GEO LOCATIONS
navigator.geolocation.getCurrentPosition(success, error);
navigator.geolocation.watchCurrentPosition(success, error);
function success(position) {
 var lat = position.coords.latitude;
 var long = position.coords.longitude;
 ...
}

LOCAL STORAGE
With HTML5, web pages can store data locally within the user's browser.
Earlier, this was done with cookies.
Web Storage is more secure and faster.
Data not included with every server request, but used ONLY when asked for.
It is also possible to store large amounts of data, without affecting the
website's performance.
The data is stored in key/value pairs, and a web page can only access data
stored by itself

All browsers today offering 5-10 MB of storage in every user’s browser.i.e., For
each domain 5MB of local storage.

sessionStorage similar to localStorage but only available in current browser
session.

EXAMPLE
Example Of Localstorage

<ul id="present_textarea" contenteditable="true">
Test1

<input type="button" id="clearall" value="clear Storage" >
<script type="text/javascript">
document.addEventListener("DOMContentLoaded", function() {
console.log("Onload fired via DOMContent Loaded");
if (localStorage.getItem("text")){
console.log("text found");
 document.getElementById("present_textarea").innerHTML = localStorage.getItem("text");
}});
var textarea=document.getElementById("present_textarea");
var clearall=document.getElementById("clearall");
clearall.onclick=function(){
 console.log("onclick");
 localStorage.clear();
};
textarea.onblur=function(){
console.log("onblur");
localStorage.setItem("text",document.getElementById("present_textarea").innerHTML);
};
</script>

http://localhost:9099/examples/localstorage.html

WHAT IS APPLICATION CACHE?

HTML5 introduces application cache, which means that a web application is
cached, and accessible without an internet connection.

Application cache gives an application three advantages:

Offline browsing - users can use the application when they're
offline Speed - cached resources load faster
Reduced server load - the browser will only download updated/changed
resources from the server

EXAMPLE

Define in HTML page
<!DOCTYPE html>
<html lang="en" manifest="cache.manifest">

cache.manifest (served with Content-Type: text/cache-manifest)
CACHE MANIFEST
2013-07-25

NETWORK:
data.php

FALLBACK:
/ /offline.html

CACHE:
/main/home
/main/app.js
/settings/home
/settings/app.js
http://myhost/logo.png
http://myhost/check.png
http://myhost/cross.png

APP CACHE – WHAT TO CACHE?
Fonts
Splash image
App icon
Entry page
Fallback bootstrap

Never Cache:

CSS
HTML
Javascript

DOM
Document Object model

P.S. To be discussed in detail tomorrow.

QUESTIONS?
1. can DOM be used to add / delete elements?
2. is Cookie part of DOM or not?

WEB API’S
1. Audio
2. Video
3. SVG
4. and many more

WEBSOCKETS
GET /chat HTTP/1.1
Host: server.example.com
Upgrade: WebSocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http://example.com
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

And on the server
HTTP/1.1 101 Switching Protocols
Upgrade: WebSocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: chat

WEBSOCKET
ws://
wss://

WEBWORKER
When executing scripts in an HTML page, the page becomes unresponsive until
the script is finished.

A web worker is a JavaScript that runs in the background, independently of
other scripts, without affecting the performance of the page. You can continue
to do whatever you want: clicking, selecting things, etc., while the web worker
runs in the background.

SERVER-SENT EVENTS - ONE WAY MESSAGING

A server-sent event is when a web page automatically gets updates from a
server.
This was also possible before, but the web page would have to ask if any
updates were available. With server-sent events, the updates come
automatically.
Examples: Facebook/Twitter updates, stock price updates, news feeds, sport
results, etc.

IFRAME SANDBOXING

JAVASCRIPT FRAME BUSTING
if(self == top) {
document.documentElement.style.display = 'block' ;
} else {
top.location = self.location ;
}

EXAMPLE FRAMEBUSTING
Open link

http://localhost:9099/%22examples/framebuster.html%22

FRAMEBUSTING BYPASS
<iframe sandbox src="/examples/framebuster.html" />

I can never be framed

EXERCISES
1. Convert html4 to html5
2. write a program with following objectives

1. webpage take input from user (use HTML5 validation where applicable)
Username
nickname
Full Name
Date of Birth
Email address

2. store all of them in localstorage except his nickname which is stored in
session storage,

3. and option to clear the storage
3. Iframe a content page which has framebusting javascript code.

WHAT WE LEARNED
1. How HTML5 differs from HTML4
2. How to convert HTML4 to HTML5
3. how to bypass framebusting code
4. How CORS work conceptually

DAY 2
1. Attacking CORS and XHR
2. Exploiting DOM

ATTACKING
XHR AND CORS

XHR
XML HTTP REQUEST

SAMPLE XHR REQUEST
function reqListener () {
 console.log(this.responseText);
}

var oReq = new XMLHttpRequest();
oReq.onload = reqListener;
oReq.open("get", "yourFile.txt", true);
oReq.send();

GET Request
yourFile.txt is fetched
true means its async call
reqlistener is callback function

So XHR allows me to fetch content and get response too so what's the problem

XHR NOT A SILVER BULLET

XHR MEET CORS
Cross Origin Resource Sharing
Relax same origin policy and allow third party read

CROSS ORIGIN NETWORK ACCESS
Origin is permitted to send data to another origin but not read

Interactions between origins are placed in three categories:

Cross origin writes (redirects, links, form action etc.)
Cross origin embedding (html tag with src/hrefs)
Cross origin reads (not allowed without CORS etc.)

CROSS ORIGIN EMBEDDING
JavaScript <script src="..."></script>.
CSS with <link rel="stylesheet" href="...">.
Images with .
Media files with <video> and <audio> tags.
Plug-ins with <object>, <embed> and <applet>.
Fonts with @font-face.
Anything with <frame> and <iframe>.

CROSS ORIGIN POLICY

WHY IS CORS NEEDED?
For legitimate and trusted requests to gain access to authorized data from
other domains
Think cross application data sharing models
Allows data to be exchanged with trusted sites while using a relaxed Same
Origin policy mode.
Application APIs exposed via web services and trusted domains require CORS to
be accessible over the SOP

CORS – SIMPLE REQUESTS
Preflight is not needed if

Request is a HEAD/GET/POST via XHR – No Custom headers
Body is text/plain

Server responds with a CORS header
Browser determines access
Neither the request, nor response contain cookies

CORS HEADERS – SIMPLE REQUEST
Origin

Header set by the client for every CORS request
Value is the current domain that made the request

Access-Control-Allow-Origin
Set by the server and used by the browser to determine if the response is to
be allowed or not.
Can be set to * to make resources public (bad practice!)

CORS – REQUESTS WITH PREFLIGHT
Preflight requests are made if

Request is a method other than HEAD/GET/POST via XHR (PUT, DELETE etc.)
Custom headers are present (X-PINGBACK etc.)
Content-Type other than application/x-www- form-urlencoded,
multipart/form-data, or text/plain

A transparent request is made to the server requesting access information
using OPTIONS

EXAMPLE FROM YESTERDAY
OPTIONS /usermail HTTP/1.1
Origin: mail.example.com
Content-Type: text/html

HTTP/1.0 200 OK
Access-Control-Allow-Origin: http://www.example.com, https://login.example.com
Access-Control-Allow-Methods: POST, GET, OPTIONS
Access-Control-Allow-Headers: X-Prototype-Version, X-Requested-With, Content-Type, Accept
Access-Control-Max-Age: 86400 Content-Type: text/html; charset=US-ASCII Connection: keep-aliv
e
Content-Length: 0

EXAMPLE: CUSTOM HEADERS
xmlhttp.open("POST","ajax_test.php",true);
xmlhttp.setRequestHeader("Content-type","application/x-www-form-urlencoded");
xmlhttp.send("fname=Henry&lname=Ford");

CORS – REQUESTS WITH PREFLIGHT
Browser sends

Origin header
Access-Control-Request-Method
Access-Control-Request-Headers – (Optional)

Server sends set of CORS headers that the browser uses to determine if the
actual request has to be made or not

CORS HEADERS – REQUEST WITH PREFLIGHT
(PREFLIGHT BROWSER REQUEST)

Origin
Header set by the client for every CORS request
Value is the current domain that made the request

Access-Control-Request-Method:
Set by the browser, along with Origin.
Value is the method that the request wants to use

Access-Control-Request-Headers(Optional):
A comma separated list of the custom headers being used.

CORS HEADERS – REQUEST WITH PREFLIGHT
(PREFLIGHT SERVER RESPONSE)

Access-Control-Allow-Origin – Same as in Simple requests
Access-Control-Allow-Methods:

a comma separated list of allowed methods
Access-Control-Allow-Headers:

a comma separated list of headers that the server will allow.
Access-Control-Max-Age:

the amount of time in seconds that this preflight request should be cached
for.

CORS INSECURITIES

CORS SECURITY - UNIVERSAL ALLOW
Setting the 'Access-Control-Allow-Origin' header to *
Effectively turns the content into a public resource, allowing access from any
domain
Scenarios?

An attacker can steal data from an intranet site that has set this header to *
by enticing a user to visit an attacker controlled site on the Internet.
An attacker can perform attacks on other remote apps via a victim’s browser
when the victim navigates to an attacker controlled site.

CORS – ACCESS CONTROL BASED ON ORIGIN
The Origin header indicates that the request is from a particular domain, but
does not guarantee it
Spoofing the Origin header allows access to the page if access is based on this
header
Scenarios?

An attacker sets the Origin header to view sensitive information that is
restricted
Attacker uses cURL to set a custom origin header

curl --header 'origin:http://someserver.com' http://myserver.com:90/demo/origin_spoof.p
hp

CORS – CACHING OF PREFLIGHT RESPONSES
The Access-Control-Max-Age header is set to a high value, allowing browsers to
cache Preflight responses
Caching the preflight response for longer duration can pose a security risk.
If the COR access-control policy is changed on the server the browser would
still follow the old policy available in the Preflight Result Cache

CORS SECURITY – MISPLACED TRUST
Data exchange between two domains is based on trust
If one of the servers involved in the exchange of data is compromised then the
model of CORS is put at risk
Scenarios?

An attacker can compromise site A and host malicious content knowing site
B trusts the data that site A sends to site B via CORS request resulting in XSS
and other attacks.
An attacker can compromise site B and use the exposed CORS functionality
in site A to attack users in site A

CSRF WITH CORS
Server may process client request to change server side data while verifying
that the Origin header was set
An attacker can use the .withCredentials = “true” property of XHR to replay any
cookies to the application on which the victim is logged in
Scenarios?

An attacker sets the Origin header or uses a trusted site A to send a non
idempotent request to site B
The victim who is logged into site B when he is viewing the trusted site A
causes site B to create a user account without his knowledge via a CSRF
attack

PREVENTIVE CHECKS
Have only one and non empty instance of the origin header,
Have only one and non empty instance of the host header,
The value of the origin header is present in a internal allowed domains list
(white list). As we act before the step 2 of the CORS HTTP requests/responses
exchange process, allowed domains list is yet provided to client,
Cache IP of the sender for 1 hour. If the sender send one time a origin domain
that is not in the white list then all is requests will return an HTTP 403 response
(protract allowed domain guessing).

MORE PREVENTIVE CHECKS
if its B2B then a strict IP filtering.
Custom Permission set per origin can be configured at the application end.
(might result in massive overhead for large application with varied origin's of
access)

EXPLOITING
DOM

DOM
DOCUMENT OBJECT MODEL

interface that allows you to programmatically access and manipulate the
contents of a web page (or document)
It provides a structured, object-oriented representation of the individual
elements and content in a page with methods for retrieving and setting the
properties of those objects
It also provides methods for adding and removing such objects, allowing you to
create dynamic content
Document is arranged in hierarchy of nodes.

DOM NODES

NodeA.firstChild = NodeA1
NodeA.lastChild = NodeA3
NodeA.childNodes.length = 3
NodeA.childNodes[0] = NodeA1
NodeA1.nextSibling = NodeA2
NodeA1.parentNode = NodeA
NodeA3b.parentNode.parentNode = NodeA

DOM SOURCE
Cookies

document.cookie
Window Name

windows.name
Everything taken from the URL

document.URL
document.URLUnencoded
document.location(.pathname|.href|.search|.hash)
window.location(.pathname|.href|.search|.hash)

The Referrer
document.referrer

SINKS
HTML Element creator

innerHTML
outerHTML
document.write

user input parsing
eval
execScript
function
setTimeout
setInterval
script.src
iframe.src
location.(replace|assign)

WHAT IS DOMXSS
http://www.webappsec.org/projects/articles/071105.html

https://code.google.com/p/domxsswiki/wiki/Introduction

http://www.webappsec.org/projects/articles/071105.html
https://code.google.com/p/domxsswiki/wiki/Introduction

HOW TO EXPLOIT DOMXSS

HOW TO FIND DOM-XSS
Finding All Sources

/(location\s*[\[.])|([.\[]\s*["']?\s*(arguments|dialogArguments|innerHTML|write(ln)?|open(Dia
log)?|showModalDialog|cookie|URL|documentURI|baseURI|referrer|name|opener|parent|top|content|
self|frames)\W)|(localStorage|sessionStorage|Database)/

Finding Sinks
/((src|href|data|location|code|value|action)\s*["'\]]*\s*\+?\s*=)|((replace|assign|navigate|g
etResponseHeader|open(Dialog)?|showModalDialog|eval|evaluate|execCommand|execScript|setTimeou
t|setInterval)\s*["'\]]*\s*\()/

Finding Sink (Jquery)
/after\(|\.append\(|\.before\(|\.html\(|\.prepend\(|\.replaceWith\(|\.wrap\(|\.wrapAll\(|\$\(
|\.globalEval\(|\.add\(|jQUery\(|\$\(|\.parseHTML\(/

USEFUL SOURCES FOR DOMXSS EXPLOITATION
andlabs.org
Domsnitch
RA2
Dominator

