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About me

● Current role: Data Engineer at ST Engineering

● Background in aerospace engineering and computational modelling

● Experience working on aerospace-related projects in collaboration 

with academia and industry partners

● Find me if you would like to chat about Industry 4.0 and flight + 

travel!



Scope of Talk

I will talk about:

1. Bottlenecks in a data science project
2. What is parallel processing?
3. When should you go for parallelism?
4. Parallel processing in data science
5. JIT in data science



A typical data science workflow

1. Define problem objective
2. Data collection and pipeline
3. Data parsing/preprocessing and Exploratory Data Analysis (EDA)
4. Feature engineering
5. Model training
6. Model evaluation
7. Visualization and Reporting
8. Model deployment



What do you think are some of the bottlenecks in a data 
science project?



Bottlenecks in a data science project

● Lack of data / Poor quality data
● Data Preprocessing

○ The 80/20 data science dilemma
■ In reality, it’s closer to 90/10

● The organization itself
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Bottlenecks in a data science project

● Data Preprocessing
○ Pandas faces low performance and long runtime issues 

when dealing with large datasets (> 1 GB)
○ Slow loops in Python

■ Loops are run on the interpreter, not compiled (unlike 
loops in C)

○ Not every data science team has extremely large volumes 
of data to justify using a Spark cluster



What is parallel processing?



Let’s imagine I own a bakery cafe.



Task 1: Toast 100 slices of bread

Assumptions: 
1. I’m using single-slice toasters.
(Yes, they actually exist.)
2. Each slice of toast takes 2 minutes 
to make.
3. No overhead time.

Image taken from: 
https://www.mitsubishielectric.co.jp/home/breadoven/product/to-st1-t/feature/index.html

https://www.mitsubishielectric.co.jp/home/breadoven/product/to-st1-t/feature/index.html


Sequential Processing

       = 25 bread slices



Sequential Processing

Processor/Worker: 
Toaster

       = 25 bread slices



Sequential Processing

Processor/Worker: 
Toaster

       = 25 bread slices        = 25 toasts



Sequential Processing

Execution Time = 100 toasts × 2 minutes/toast
= 200 minutes 



Parallel Processing

       = 25 bread slices



Parallel Processing 



Parallel Processing 

Processor (Core): 
Toaster



Parallel Processing 

Processor (Core): 
Toaster

Task is executed using 
a pool of 4 toaster 
subprocesses.

Each toasting 
subprocess runs in 
parallel and 
independently from 
each other.



Parallel Processing 

Processor (Core): 
Toaster

Output of each 
toasting process is 
consolidated and 
returned as an overall 
output (which may or 
may not be ordered).



Parallel Processing 

Execution Time
 = 100 toasts × 2 
minutes/toast ÷ 
4 toasters
= 50 minutes

Speedup
= 4 times



Synchronous vs Asynchronous Execution



What do you mean by “Asynchronous”?



Let’s get some ideas from the Kopi.JS folks.

(since they do async programming more than the data folks)





me: One kopi pls

(promise)
Uncle: Ok, take this number and sit down, 
send to you when ready
me: [sits down, surfs twitter]
uncle: [walks over] order #23, here you go

(async/await)
uncle: Ok [makes kopi]
me: [wait in place, surfs twitter]
uncle: [kopi done] Here you go

(Credits to: @sheldytox)



me: One kopi pls

(promise)
Uncle: Ok, take this number and sit down, 
send to you when ready
me: [sits down, surfs twitter]
uncle: [walks over] order #23, here you go

(async/await)
uncle: Ok [makes kopi]
me: [wait in place, surfs twitter]
uncle: [kopi done] Here you go

(Credits to: @sheldytox)

Another scenario, you wake up and 
order coffee via a delivery app. Do you 
wait by the phone for the coffee to 
arrive or do you go and do other things 
(while "awaiting" for the coffee to 
arrive)?

(Credits to: @yingkh_tweets)



Task 2: Brew coffee

Assumptions: 
1. I can do other stuff while making 
coffee.
2. One coffee maker to make one cup 
of coffee.
3. Each cup of coffee takes 5 minutes 
to make.

Image taken from: https://www.crateandbarrel.com/breville-barista-espresso-machine/s267619

https://www.crateandbarrel.com/breville-barista-espresso-machine/s267619


Synchronous Execution

Process 2: Brew a cup of coffee on 
coffee machine
Duration: 5 minutes
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Synchronous Execution

Process 2: Brew a cup of coffee on 
coffee machine
Duration: 5 minutes

Process 1: Toast a slice of 
bread on single-slice toaster 
after Process 2 is completed
Duration: 2 minutes

Output: 1 toast + 1 coffee
Total Execution Time = 5 minutes + 2 minutes = 7 minutes



Asynchronous Execution

While brewing coffee:

Make some toasts:



Asynchronous Execution

Output: 2 toasts + 1 coffee (1 more toast!)
Total Execution Time = 5 minutes



When is it a good idea to go for 
parallelism?



When is it a good idea to go for 
parallelism?

(or, “Is it a good idea to simply buy a 256-core processor and 
parallelize all your codes?”)



Practical Considerations

● Is your code already optimized?
○ Sometimes, you might need to rethink your approach.
○ Example: Use list comprehensions or map functions instead of 

for-loops for array iterations.



Practical Considerations

● Is your code already optimized?
○ Sometimes, you might need to rethink your approach.

● Problem architecture
○ Nature of problem limits how successful parallelization can be.
○ If your problem consists of processes which depend on each 

others’ outputs, maybe not.



Practical Considerations

● Is your code already optimized?
○ Sometimes, you might need to rethink your approach.

● Problem architecture
○ Nature of problem limits how successful parallelization can be.

● Overhead in parallelism
○ There will always be parts of the work that cannot be 

parallelized. → Amdahl’s Law
○ Extra time required for coding and debugging (parallelism vs 

sequential code)



Amdahl’s Law and Parallelism

Amdahl’s Law states that the theoretical speedup is defined 
by the fraction of code p that can be parallelized:

S: Theoretical speedup (theoretical latency)
p: Fraction of the code that can be parallelized
N: Number of processors (cores)



Amdahl’s Law and Parallelism

If there are no parallel parts (p 
= 0): Speedup = 0
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Amdahl’s Law and Parallelism

If there are no parallel parts (p 
= 0): Speedup = 0

If all parts are parallel (p = 1): 
Speedup = N → ∞

Speedup is limited by fraction 
of the work that is not 
parallelizable - will not 
improve even with infinite 
number of processors
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Multiprocessing vs Multithreading

Multiprocessing:

System allows executing 
multiple processes at the  
same time using multiple 
processors

Better option for processing 
large volumes of data

Multithreading:

System executes multiple 
threads of sub-processes at 
the same time within a 
single processor

Best suited for I/O 
operations



Parallel Processing in Data Science



Parallel Processing in Data Science

Python is the most widely-used 
programming language in data science

Distributed processing is one of the 
core concepts of Apache Spark

Apache Spark is available in Python as 
PySpark



Parallel Processing in Data Science

Data processing tends to be more 
compute-intensive

→ Switching between threads 
become increasingly inefficient

→ Global Interpreter Lock (GIL) in 
Python does not allow parallel thread 
execution 



How to do Parallel Processing in Python?



Parallel Processing in Python

concurrent.futures module

● High-level API for launching asynchronous parallel tasks
● Introduced in Python 3.2 as an abstraction layer over 

multiprocessing module
● Two modes of execution:

○ ThreadPoolExecutor() for multithreading
○ ProcessPoolExecutor() for multiprocessing



ProcessPoolExecutor vs ThreadPoolExecutor

From the Python Standard Library documentation:

For ProcessPoolExecutor, this method chops iterables into a number of 
chunks which it submits to the pool as separate tasks. The 
(approximate) size of these chunks can be specified by setting 
chunksize to a positive integer. For very long iterables, using a large 
value for chunksize can significantly improve performance compared to 
the default size of 1. With ThreadPoolExecutor, chunksize has no effect.



Recap: map()

map() takes as input:

1. The function that you would like to run, and
2. A list (iterable) where each element of the list is a single 

input to that function;

and returns an iterator that yields the results of the function 
being applied to every element of the list.



map() in concurrent.futures

Similarly, executor.map() takes as input:

1. The function that you would like to run, and
2. A list (iterable) where each element of the list is a single 

input to that function;

and returns an iterator that yields the results of the function 
being applied to every element of the list.



“Okay, I tried using parallel processing but my 
processing code in Python is still slow. 

What else can I do?”



Compiled vs Interpreted Languages

Written Code Compiler
Compiled Code 

in Target 
Language

Linker

Machine Code 
(executable)LoaderExecution



Compiled vs Interpreted Languages

Written Code Compiler Lower-level 
bytecode

Virtual 
MachineExecution



JIT Compilation

Just-In-Time (JIT) compilation

● Converts source code into native machine code at 
runtime

● Is the reason why Java runs on a Virtual Machine (JVM) 
yet has comparable performance to compiled languages 
(C/C++ etc., Go)



JIT Compilation in Data Science



JIT Compilation in Data Science

numba module

● Just-in-Time (JIT) compiler for Python that converts 
Python functions into machine code

● Can be used by simply applying a decorator (a wrapper) 
around functions to instruct numba to compile them

● Two modes of execution:
○ njit for no-Python mode (JIT only)
○ jit for object mode (JIT + Python interpreter)



Practical Implementation



Case: Image Processing

Dataset: Shopee National Data Science Challenge 
(https://www.kaggle.com/c/ndsc-advanced)

Size: 77.6GB of image files

Data Quality: Images in the dataset are of different formats 
(some are RGB while others are RGBA) and different 
dimensions

https://www.kaggle.com/c/ndsc-advanced


Without Parallelism

import sys
import time

N = 35000 # size of dataset to be processed
start = 0
batch_size = 1000
partition = int(np.ceil(N/step))
partition_count = 0
imagearray_list = [None] * partition

start_cpu_time = time.clock()
start_wall_time = time.time()



Without Parallelism

while start < N:

      end = start + batch_size
      if end > N:
            end = N

      imagearray_list[partition_count] = 
[arraypartition_calc(image) for image in range(start, end)]

      start += batch_size
      partition_count += 1
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Without Parallelism

while start < N:

      end = start + batch_size
      if end > N:
            end = N

      imagearray_list[partition_count] = 
[arraypartition_calc(image) for image in range(start, end)]

      start += batch_size
      partition_count += 1

Execution Speed: 
3300 images after 7 hours
= 471.43 images/hr



With Parallelism and JIT compilation

from PIL import Image
from numba import jit

@jit
def image_proc(index):
      '''Convert + resize image'''
      im = Image.open(define_imagepath(index))
      im = im.convert("RGB")
      im_resized = np.array(im.resize((64,64)))

      return im_resized



With Parallelism and JIT compilation

from PIL import Image
from numba import jit

@jit
def image_proc(index):
      '''Convert + resize image'''
      im = Image.open(define_imagepath(index))
      im = im.convert("RGB")
      im_resized = np.array(im.resize((64,64)))

      return im_resized

Note: I can’t use no-Python mode 
(@njit) as PIL codes can’t seem to 
be compiled into machine code



With Parallelism and JIT compilation

@jit
def arraypartition_calc(start, batch_size):

 '''Process images in partition/batch'''
    end = start + batch_size
    if end > N:
          end = N

    partition_list = [image_proc(image) for image 
in range(start, end)]

    return partition_list



With Parallelism and JIT compilation

@jit
def arraypartition_calc(start, batch_size):

 '''Process images in partition/batch'''
    end = start + batch_size
    if end > N:
          end = N

    partition_list = [image_proc(image) for image 
in range(start, end)]

    return partition_list



With Parallelism and JIT compilation

N = 35000
start = 0
batch_size = 1000
partition, mod = divmod(N, batch_size)

if mod:
  partition_index = [i * batch_size for i in range(start // 
batch_size, partition + 1)]
else:
  partition_index = [i * batch_size for i in range(start // 
batch_size, partition)]



With Parallelism and JIT compilation

import sys
import time
from concurrent.futures import ProcessPoolExecutor

start_cpu_time = time.clock()
start_wall_time = time.time()

with ProcessPoolExecutor() as executor:
      future = executor.map(arraypartition_calc, partition_index)

imgarray_np = np.array([x for x in future])
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start_cpu_time = time.clock()
start_wall_time = time.time()

with ProcessPoolExecutor() as executor:
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With Parallelism and JIT compilation

import sys
import time
from concurrent.futures import ProcessPoolExecutor

start_cpu_time = time.clock()
start_wall_time = time.time()

with ProcessPoolExecutor() as executor:
      future = executor.map(arraypartition_calc, partition_index)

imgarray_np = np.array([x for x in future])

Execution Speed: 
35000 images after 3.6 hours
= 9722.22 images/hr

No. of cores: 2
Speedup: 19.4 times



With Parallelism and JIT compilation

import sys
import time
from concurrent.futures import ProcessPoolExecutor

start_cpu_time = time.clock()
start_wall_time = time.time()

with ProcessPoolExecutor() as executor:
      future = executor.map(arraypartition_calc, partition_index)

imgarray_np = np.array([x for x in future]) Extract results from 
iterator (similar to 
generator)



Key Takeaways



Parallel Processing in Data Science

● Not all processes should be parallelized
○ Amdahl’s Law on parallelism
○ Extra time required for coding and debugging (parallelism vs 

sequential code)
○ If the cost of rewriting your code for parallelization outweighs 

the time savings from parallelizing your code (especially if your 
process only takes a few hours), maybe you should consider 
other ways of optimizing your code instead.



JIT compilation in Data Science

● Just-in-Time (JIT) compilation
○ converts source code from non-compiled languages 

into native machine code at runtime
○ may not work for some functions/modules - these are 

still run on the interpreter
○ significantly enhances speedups provided by 

parallelization
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