
How to Make Your Data
Processing Faster -

Parallel Processing and JIT in Data Science

Presented by:
Ong Chin Hwee (@ongchinhwee)

31 August 2019
Women Who Code Connect Asia, Singapore

About me

● Current role: Data Engineer at ST Engineering

● Background in aerospace engineering and computational modelling

● Experience working on aerospace-related projects in collaboration

with academia and industry partners

● Find me if you would like to chat about Industry 4.0 and flight +

travel!

Scope of Talk

I will talk about:

1. Bottlenecks in a data science project
2. What is parallel processing?
3. When should you go for parallelism?
4. Parallel processing in data science
5. JIT in data science

A typical data science workflow

1. Define problem objective
2. Data collection and pipeline
3. Data parsing/preprocessing and Exploratory Data Analysis (EDA)
4. Feature engineering
5. Model training
6. Model evaluation
7. Visualization and Reporting
8. Model deployment

What do you think are some of the bottlenecks in a data
science project?

Bottlenecks in a data science project

● Lack of data / Poor quality data
● Data Preprocessing

○ The 80/20 data science dilemma
■ In reality, it’s closer to 90/10

● The organization itself

Bottlenecks in a data science project

● Data Preprocessing
○ Pandas faces low performance and long runtime issues

when dealing with large datasets (> 1 GB)

Bottlenecks in a data science project

● Data Preprocessing
○ Pandas faces low performance and long runtime issues

when dealing with large datasets (> 1 GB)
○ Slow loops in Python

■ Loops are run on the interpreter, not compiled (unlike
loops in C)

Bottlenecks in a data science project

● Data Preprocessing
○ Pandas faces low performance and long runtime issues

when dealing with large datasets (> 1 GB)
○ Slow loops in Python

■ Loops are run on the interpreter, not compiled (unlike
loops in C)

○ Not every data science team has extremely large volumes
of data to justify using a Spark cluster

What is parallel processing?

Let’s imagine I own a bakery cafe.

Task 1: Toast 100 slices of bread

Assumptions:
1. I’m using single-slice toasters.
(Yes, they actually exist.)
2. Each slice of toast takes 2 minutes
to make.
3. No overhead time.

Image taken from:
https://www.mitsubishielectric.co.jp/home/breadoven/product/to-st1-t/feature/index.html

https://www.mitsubishielectric.co.jp/home/breadoven/product/to-st1-t/feature/index.html

Sequential Processing

 = 25 bread slices

Sequential Processing

Processor/Worker:
Toaster

 = 25 bread slices

Sequential Processing

Processor/Worker:
Toaster

 = 25 bread slices = 25 toasts

Sequential Processing

Execution Time = 100 toasts × 2 minutes/toast
= 200 minutes

Parallel Processing

 = 25 bread slices

Parallel Processing

Parallel Processing

Processor (Core):
Toaster

Parallel Processing

Processor (Core):
Toaster

Task is executed using
a pool of 4 toaster
subprocesses.

Each toasting
subprocess runs in
parallel and
independently from
each other.

Parallel Processing

Processor (Core):
Toaster

Output of each
toasting process is
consolidated and
returned as an overall
output (which may or
may not be ordered).

Parallel Processing

Execution Time
 = 100 toasts × 2
minutes/toast ÷
4 toasters
= 50 minutes

Speedup
= 4 times

Synchronous vs Asynchronous Execution

What do you mean by “Asynchronous”?

Let’s get some ideas from the Kopi.JS folks.

(since they do async programming more than the data folks)

me: One kopi pls

(promise)
Uncle: Ok, take this number and sit down,
send to you when ready
me: [sits down, surfs twitter]
uncle: [walks over] order #23, here you go

(async/await)
uncle: Ok [makes kopi]
me: [wait in place, surfs twitter]
uncle: [kopi done] Here you go

(Credits to: @sheldytox)

me: One kopi pls

(promise)
Uncle: Ok, take this number and sit down,
send to you when ready
me: [sits down, surfs twitter]
uncle: [walks over] order #23, here you go

(async/await)
uncle: Ok [makes kopi]
me: [wait in place, surfs twitter]
uncle: [kopi done] Here you go

(Credits to: @sheldytox)

Another scenario, you wake up and
order coffee via a delivery app. Do you
wait by the phone for the coffee to
arrive or do you go and do other things
(while "awaiting" for the coffee to
arrive)?

(Credits to: @yingkh_tweets)

Task 2: Brew coffee

Assumptions:
1. I can do other stuff while making
coffee.
2. One coffee maker to make one cup
of coffee.
3. Each cup of coffee takes 5 minutes
to make.

Image taken from: https://www.crateandbarrel.com/breville-barista-espresso-machine/s267619

https://www.crateandbarrel.com/breville-barista-espresso-machine/s267619

Synchronous Execution

Process 2: Brew a cup of coffee on
coffee machine
Duration: 5 minutes

Synchronous Execution

Process 2: Brew a cup of coffee on
coffee machine
Duration: 5 minutes

Process 1: Toast a slice of
bread on single-slice toaster
after Process 2 is completed
Duration: 2 minutes

Synchronous Execution

Process 2: Brew a cup of coffee on
coffee machine
Duration: 5 minutes

Process 1: Toast a slice of
bread on single-slice toaster
after Process 2 is completed
Duration: 2 minutes

Output: 1 toast + 1 coffee
Total Execution Time = 5 minutes + 2 minutes = 7 minutes

Asynchronous Execution

While brewing coffee:

Make some toasts:

Asynchronous Execution

Output: 2 toasts + 1 coffee (1 more toast!)
Total Execution Time = 5 minutes

When is it a good idea to go for
parallelism?

When is it a good idea to go for
parallelism?

(or, “Is it a good idea to simply buy a 256-core processor and
parallelize all your codes?”)

Practical Considerations

● Is your code already optimized?
○ Sometimes, you might need to rethink your approach.
○ Example: Use list comprehensions or map functions instead of

for-loops for array iterations.

Practical Considerations

● Is your code already optimized?
○ Sometimes, you might need to rethink your approach.

● Problem architecture
○ Nature of problem limits how successful parallelization can be.
○ If your problem consists of processes which depend on each

others’ outputs, maybe not.

Practical Considerations

● Is your code already optimized?
○ Sometimes, you might need to rethink your approach.

● Problem architecture
○ Nature of problem limits how successful parallelization can be.

● Overhead in parallelism
○ There will always be parts of the work that cannot be

parallelized. → Amdahl’s Law
○ Extra time required for coding and debugging (parallelism vs

sequential code)

Amdahl’s Law and Parallelism

Amdahl’s Law states that the theoretical speedup is defined
by the fraction of code p that can be parallelized:

S: Theoretical speedup (theoretical latency)
p: Fraction of the code that can be parallelized
N: Number of processors (cores)

Amdahl’s Law and Parallelism

If there are no parallel parts (p
= 0): Speedup = 0

Amdahl’s Law and Parallelism

If there are no parallel parts (p
= 0): Speedup = 0

If all parts are parallel (p = 1):
Speedup = N → ∞

Amdahl’s Law and Parallelism

If there are no parallel parts (p
= 0): Speedup = 0

If all parts are parallel (p = 1):
Speedup = N → ∞

Speedup is limited by fraction
of the work that is not
parallelizable - will not
improve even with infinite
number of processors

Multiprocessing vs Multithreading

Multiprocessing:

System allows executing
multiple processes at the
same time using multiple
processors

Multiprocessing vs Multithreading

Multiprocessing:

System allows executing
multiple processes at the
same time using multiple
processors

Multithreading:

System executes multiple
threads of sub-processes at
the same time within a
single processor

Multiprocessing vs Multithreading

Multiprocessing:

System allows executing
multiple processes at the
same time using multiple
processors

Better option for processing
large volumes of data

Multithreading:

System executes multiple
threads of sub-processes at
the same time within a
single processor

Best suited for I/O
operations

Parallel Processing in Data Science

Parallel Processing in Data Science

Python is the most widely-used
programming language in data science

Distributed processing is one of the
core concepts of Apache Spark

Apache Spark is available in Python as
PySpark

Parallel Processing in Data Science

Data processing tends to be more
compute-intensive

→ Switching between threads
become increasingly inefficient

→ Global Interpreter Lock (GIL) in
Python does not allow parallel thread
execution

How to do Parallel Processing in Python?

Parallel Processing in Python

concurrent.futures module

● High-level API for launching asynchronous parallel tasks
● Introduced in Python 3.2 as an abstraction layer over

multiprocessing module
● Two modes of execution:

○ ThreadPoolExecutor() for multithreading
○ ProcessPoolExecutor() for multiprocessing

ProcessPoolExecutor vs ThreadPoolExecutor

From the Python Standard Library documentation:

For ProcessPoolExecutor, this method chops iterables into a number of
chunks which it submits to the pool as separate tasks. The
(approximate) size of these chunks can be specified by setting
chunksize to a positive integer. For very long iterables, using a large
value for chunksize can significantly improve performance compared to
the default size of 1. With ThreadPoolExecutor, chunksize has no effect.

Recap: map()

map() takes as input:

1. The function that you would like to run, and
2. A list (iterable) where each element of the list is a single

input to that function;

and returns an iterator that yields the results of the function
being applied to every element of the list.

map() in concurrent.futures

Similarly, executor.map() takes as input:

1. The function that you would like to run, and
2. A list (iterable) where each element of the list is a single

input to that function;

and returns an iterator that yields the results of the function
being applied to every element of the list.

“Okay, I tried using parallel processing but my
processing code in Python is still slow.

What else can I do?”

Compiled vs Interpreted Languages

Written Code Compiler
Compiled Code

in Target
Language

Linker

Machine Code
(executable)LoaderExecution

Compiled vs Interpreted Languages

Written Code Compiler Lower-level
bytecode

Virtual
MachineExecution

JIT Compilation

Just-In-Time (JIT) compilation

● Converts source code into native machine code at
runtime

● Is the reason why Java runs on a Virtual Machine (JVM)
yet has comparable performance to compiled languages
(C/C++ etc., Go)

JIT Compilation in Data Science

JIT Compilation in Data Science

numba module

● Just-in-Time (JIT) compiler for Python that converts
Python functions into machine code

● Can be used by simply applying a decorator (a wrapper)
around functions to instruct numba to compile them

● Two modes of execution:
○ njit for no-Python mode (JIT only)
○ jit for object mode (JIT + Python interpreter)

Practical Implementation

Case: Image Processing

Dataset: Shopee National Data Science Challenge
(https://www.kaggle.com/c/ndsc-advanced)

Size: 77.6GB of image files

Data Quality: Images in the dataset are of different formats
(some are RGB while others are RGBA) and different
dimensions

https://www.kaggle.com/c/ndsc-advanced

Without Parallelism

import sys
import time

N = 35000 # size of dataset to be processed
start = 0
batch_size = 1000
partition = int(np.ceil(N/step))
partition_count = 0
imagearray_list = [None] * partition

start_cpu_time = time.clock()
start_wall_time = time.time()

Without Parallelism

while start < N:

 end = start + batch_size
 if end > N:
 end = N

 imagearray_list[partition_count] =
[arraypartition_calc(image) for image in range(start, end)]

 start += batch_size
 partition_count += 1

Without Parallelism

while start < N:

 end = start + batch_size
 if end > N:
 end = N

 imagearray_list[partition_count] =
[arraypartition_calc(image) for image in range(start, end)]

 start += batch_size
 partition_count += 1

Without Parallelism

while start < N:

 end = start + batch_size
 if end > N:
 end = N

 imagearray_list[partition_count] =
[arraypartition_calc(image) for image in range(start, end)]

 start += batch_size
 partition_count += 1

Execution Speed:
3300 images after 7 hours
= 471.43 images/hr

With Parallelism and JIT compilation

from PIL import Image
from numba import jit

@jit
def image_proc(index):
 '''Convert + resize image'''
 im = Image.open(define_imagepath(index))
 im = im.convert("RGB")
 im_resized = np.array(im.resize((64,64)))

 return im_resized

With Parallelism and JIT compilation

from PIL import Image
from numba import jit

@jit
def image_proc(index):
 '''Convert + resize image'''
 im = Image.open(define_imagepath(index))
 im = im.convert("RGB")
 im_resized = np.array(im.resize((64,64)))

 return im_resized

Note: I can’t use no-Python mode
(@njit) as PIL codes can’t seem to
be compiled into machine code

With Parallelism and JIT compilation

@jit
def arraypartition_calc(start, batch_size):

 '''Process images in partition/batch'''
 end = start + batch_size
 if end > N:
 end = N

 partition_list = [image_proc(image) for image
in range(start, end)]

 return partition_list

With Parallelism and JIT compilation

@jit
def arraypartition_calc(start, batch_size):

 '''Process images in partition/batch'''
 end = start + batch_size
 if end > N:
 end = N

 partition_list = [image_proc(image) for image
in range(start, end)]

 return partition_list

With Parallelism and JIT compilation

N = 35000
start = 0
batch_size = 1000
partition, mod = divmod(N, batch_size)

if mod:
 partition_index = [i * batch_size for i in range(start //
batch_size, partition + 1)]
else:
 partition_index = [i * batch_size for i in range(start //
batch_size, partition)]

With Parallelism and JIT compilation

import sys
import time
from concurrent.futures import ProcessPoolExecutor

start_cpu_time = time.clock()
start_wall_time = time.time()

with ProcessPoolExecutor() as executor:
 future = executor.map(arraypartition_calc, partition_index)

imgarray_np = np.array([x for x in future])

With Parallelism and JIT compilation

import sys
import time
from concurrent.futures import ProcessPoolExecutor

start_cpu_time = time.clock()
start_wall_time = time.time()

with ProcessPoolExecutor() as executor:
 future = executor.map(arraypartition_calc, partition_index)

imgarray_np = np.array([x for x in future])

Execution Speed:
35000 images after 3.6 hours
= 9722.22 images/hr

With Parallelism and JIT compilation

import sys
import time
from concurrent.futures import ProcessPoolExecutor

start_cpu_time = time.clock()
start_wall_time = time.time()

with ProcessPoolExecutor() as executor:
 future = executor.map(arraypartition_calc, partition_index)

imgarray_np = np.array([x for x in future])

Execution Speed:
35000 images after 3.6 hours
= 9722.22 images/hr

No. of cores: 2
Speedup: 19.4 times

With Parallelism and JIT compilation

import sys
import time
from concurrent.futures import ProcessPoolExecutor

start_cpu_time = time.clock()
start_wall_time = time.time()

with ProcessPoolExecutor() as executor:
 future = executor.map(arraypartition_calc, partition_index)

imgarray_np = np.array([x for x in future]) Extract results from
iterator (similar to
generator)

Key Takeaways

Parallel Processing in Data Science

● Not all processes should be parallelized
○ Amdahl’s Law on parallelism
○ Extra time required for coding and debugging (parallelism vs

sequential code)
○ If the cost of rewriting your code for parallelization outweighs

the time savings from parallelizing your code (especially if your
process only takes a few hours), maybe you should consider
other ways of optimizing your code instead.

JIT compilation in Data Science

● Just-in-Time (JIT) compilation
○ converts source code from non-compiled languages

into native machine code at runtime
○ may not work for some functions/modules - these are

still run on the interpreter
○ significantly enhances speedups provided by

parallelization

References

Official Python documentation on concurrent.futures
(https://docs.python.org/3/library/concurrent.futures.html)

Built-in Functions - Python 3.7.4 Documentation
(https://docs.python.org/3/library/functions.html#map)

5-minute Guide to Numba
(http://numba.pydata.org/numba-doc/latest/user/5minguide.html)

https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/functions.html#map
http://numba.pydata.org/numba-doc/latest/user/5minguide.html

Contact

Ong Chin Hwee
LinkedIn: ongchinhwee
Twitter: @ongchinhwee
https://ongchinhwee.me

