
Deploying and running your first application on K8s

 

Alexander Reelsen 
alex@elastic.co | @spinscale

mailto:alex@elastic.co
https://twitter.com/spinscale


How to build, run & maintain 
a modern java web application 
with minimal resources 
on K8s

Today's goal



 Level: Intro 
 Perspective: Developer, user of existing K8s cluster 
 Journey from nothing to downtime free rollout during peak traffic

Rocket-science free zone!



Developer & Advocate @Elastic

PaaS fan, IaC fan

K8s skeptic: Primitives  level of abstraction 

First rule of SWE: Don't write code, if you don't want to maintain it...

About me

https://twitter.com/elastic


Organized by the Elastic Community Team

Virtual

Around the clock

Several languages

No talks from Elastic Community Team members

2021 was a success, 70 talks

Elastic Community Conference



2022: ElasticCC Registration via Elastic Cloud



Decision: Build  vs. Buy (Registration, Live Streaming)

Platform: PaaS vs. K8s  (no approval required)

Datastore: SQL vs. Elastic Cloud  vs. API

Let's do this: Own web application

Discussion



Decision: Build  vs. Buy (Registration, Live Streaming)

Platform: PaaS vs. K8s  (no approval required)

Datastore: Sql vs. Elastic Cloud  vs. API

Let's do this: Own web application

Use your own technologies in production 
--Me

Discussion



Login via Cloud



Schedule



Feedback



Architecture



No other teams involved after initial setup

Collective ownership within the team

Well tested

How to build, run & maintain



Javalin as a framework

Latest Java version

Latest GC (ZGC)

pac4j for SAML based authorization

Frontend for backend developers with htmx and hyperscript

New Elasticsearch Java Client

Elastic APM Agent

... a modern java web application

https://javalin.io/
https://pac4j.org/
https://htmx.org/
https://hyperscript.org/


Small pods

Fast rollouts

No one working full time on this

No user accounts/passwords should be stored

Easy rollout for everyone in the community team

... with minimal resources



Utilizing company wide resources

Rollout: docker build && docker push && kubectl restart ...

imagePullPolicy: Always

... on K8s



apiVersion: vaultproject.io/v1 
kind: SecretClaim 
metadata: 
  name: elasticcc-app 
  namespace: community 
spec: 
  type: Opaque 
  path: secret/k8s/elasticcc-app 
  renew: 3600 

Secrets with Vault



apiVersion: apps/v1 
kind: Deployment 
spec: 
  template: 
    spec: 
      containers: 
        - name: elasticcc-app 
          env: 
          - name: ELASTICSEARCH_PASSWORD 
            valueFrom: 
              secretKeyRef: 
                name: elasticcc-app 
                key: elasticsearch_password 

Secrets with Vault



vault write secret/k8s/elasticcc-app \ 
   elasticsearch_password=S3cr3t \ 
   key=value 

Secrets with Vault



apiVersion: apps/v1 
kind: Deployment 
spec: 
  replicas: 1 
  strategy: 
    rollingUpdate: 
      maxUnavailable: 0 
    type: RollingUpdate 

Rollouts without downtime



Just start more pods... not so easy

Requests are distributed via round robin

Javalin is a Servlet based web framework with a notion of sessions...

... each user gets a session cookie with a corresponding map of attributes on
the server side

Server side: User user = ctx.sessionAttribute("user")

Instance shutdown kills session

Session fixation? Works until shutdown...

Rollouts without downtime



this.app = Javalin.create(cfg -> { 
  cfg.sessionHandler(() -> createSessionHandler(elasticsearchClient)); 
}); 

public static SessionHandler createSessionHandler(ElasticsearchClient client) { 
  SessionHandler sessionHandler = new SessionHandler(); 
  // session handler setup here... 

  SessionCache sessionCache = new NullSessionCache(sessionHandler); 
  sessionCache.setSaveOnCreate(true); 
  sessionCache.setFlushOnResponseCommit(true); 
  sessionCache.setSessionDataStore(new ElasticsearchSessionDataStore(client)); 

  sessionHandler.setSessionCache(sessionCache); 
  return sessionHandler; 
} 

Rollouts without downtime



Every request writes its session data to Elasticsearch when finished

Bad idea! The internet consists of bots... a lot

100k requests per hour before the announcement due to security scanners

Solution: Only persist session if a login/logout has happened prior

Major reduction of Elasticsearch write operations, resulting in faster responses

Rollouts without downtime



No announcement, but 100k req/hour?

apiVersion: extensions/v1beta1 
kind: Ingress 
metadata: 
  name: elasticcc-app-ngx 
  namespace: community 
  annotations: 
    kubernetes.io/ingress.class: nginx 
    cert-manager.io/cluster-issuer: letsencrypt-production 



livenessProbe: 
  failureThreshold: 3 
  periodSeconds: 30 
  httpGet: 
    path: /monitoring/health 
    port: 8080 
readinessProbe: 
  failureThreshold: 15 
  initialDelaySeconds: 10 
  periodSeconds: 5 
  httpGet: 
    path: /monitoring/health 
    port: 8080 

Probes



resources: 
  requests: 
    cpu: 2.0 
    memory: 1Gi 
  limits: 
    cpu: 2.0 
    memory: 1Gi 

def jvmOptions = ["-XX:+UseZGC", "-Xmx768m"] 

startScripts { 
  defaultJvmOpts = jvmOptions 
} 

Setting JVM memory



spec: 
  template: 
    metadata: 
      annotations: 
        watcher.alerts.slack: "#community-downtime-notifications" 
      labels: 
        app: elasticcc-app 
        watcher: enabled 

Monitoring



Tradeoff
GraalVM for speed and lower memory footprint

APM agents require bytecode instrumentation

Observability



Observability



Observability





Logs were not on the same instance, adding friction

Logs required k8s configuration change in our case, tedious

Component that shipped logs over the network would have been great

Do you really need logs, when exceptions are logged? 

Debugging



Automatic rollouts

Stateful services outsourced

Setup-as-code (i.e. via terraform to also include Elasticsearch cluster)

APM tooling can be tricky, hard to distinguish single service memory spikes
when running several pods

Missing



APM early detected an exception thrown when a template was rendered

Rolled out before main traffic was coming in

No issue during the 12 hours of the conference

> 170k valid requests served in total, 1.7 mio in total

95th percentile:
/schedule : 8.8ms

/speaker/{id} : 5.0ms

/session/{id} : 5.5ms

Conference day



Log4Shell: From slack notification to assessing to rollout in 14 minutes

Impact: Dropped the little one later to kindergarten

Agility



10/10 Would do again!

Don't go crazy on automation (i.e. push on rollout etc)

Go with Cookie based session store?

Go crazy on IaC!

Logs should be easily accessible, just like APM data

Level of abstraction: 

Summary



Primitives are designed for operations (CPU, Memory)

When to scale up/out? Application hint required:
 # of concurrent requests 
 duration of requests 
 wait time until processed

Scaling strategy: Start pods if one is overloaded? Or all?

Talk to developers about this, the discussions within your company 
(especially with legacy apps) will be a great exercise for everyone

Summary: Level of abstraction



Thanks for listening

Q & A

Alexander Reelsen 
alex@elastic.co | @spinscale

mailto:alex@elastic.co
https://twitter.com/spinscale


What technologies would you use?

Where did I go wrong?

Alex, this is not how you do it in k8s world!11!!elf!  - I'm sure, please
talk to me 

Discussion



Thanks for listening

Q & A

Alexander Reelsen 
alex@elastic.co | @spinscale

mailto:alex@elastic.co
https://twitter.com/spinscale

