ADAPTIVE

INTENT-BASED
CLI STATE MACHINES

(@WSWYX

< netlify EREP conf - _ May 2019

‘ [
$'\€§ netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

https://github.com/rupa/z

‘ [
RIS netlify Adaptive Intent-Based CLI State Machines

X7, Oclif Conf, May 2019

@swyx

“Frecency”

Jump to a conversation tab or T | to navigate

Matt

Matt Bylander

Matt Haughey
Matt Heist
Matt Hodgins

Matt Kump

https://slack.engineering/a-faster-smarter-quick-switcher-77cbc193cb60

ADAPTIVE

INTENT-BASED
CLI STATE MACHINES

RIDICULOUSLY

OVER-ENGINEERED
COMMAND LINE APPS

@@@@@

NETLIFY
NETLIFY CLI
NETLIFY DEV

‘ [
NI netlify Adaptive Intent-Based CLI State Machines

X7, Oclif Conf, May 2019

@swyx

DISCLAIMER

THIS IS MOSTLY
COLLEAGUES’ WORK

F<. .
R 3%

RBret Comnes

David Wells Ryan Neal Matt Biilmann David Calavera

‘ |3
$'\€‘§ netlify Adaptive Intent-Based CLI State Machines

Oclif Conf, May 2019

BitBalloon

@swyx

The ultimate hosting platform
tor your HTMLS sites & apps

$ign Up for Free

Fout oo™ Ta.ry - - s W - -

)
%s netlify

S Adaptive Intent-Based CLI State Machines

StaticGen.com

A List of Static Site Generators for JAMstack Sites

90

Oclif Conf, May 2019 @swyx

About Contribute About JAMstack Need a Static CMS?

Filter Sort

Any Language Any Template Any License GitHub stars

Jekyll

* O] ¥ 4
37839 134 8236 6801
+14

A simple, blog-aware, static site
generator.

Languages: Ruby
Templates: Liquid

License: MIT

Deploy to Netlify

Gatsby

* ® ¥ v
35096 517 5087 27417
-193

Next

* ® ¥
37781 218 4501
33

A framework for statically-exported
React apps

Languages: JavaScript
Templates: React

License: MIT

Hexo

* ® ¥ v
26644 210 3553 2155
-10

Hugo

* ® ¥ L4
35514 368 3987 6926
+112

A Fast and Flexible Static Site
Generator.

Languages: Go
Templates: Go

License: Apache 2.0

Deploy to Netlify

GitBook

* ® ¥ L
20780 1002 2954 5233
+113

Get started with one
click!

For generators with the "Deploy
to Netlify" button, you can
deploy a new site from a
template with one click. Get
HTTPS, continuous delivery, and
bring a custom domain, free of
charge.

Want your own Deploy to Netlify
button?

Nuxt

* ® ¥ L
20398 148 1742 23982
-246

http://StaticGen.com

‘ [
RIS netlify Adaptive Intent-Based CLI State Machines

X7, Oclif Conf, May 2019

@swyx

g‘ SMASHING - — e e & .
MAGAZINE . Q Topics
Books Events Jobs Membership

Physical & digital books Conferences & workshops Find work & employees Webinars & early-birds

NOVEMBER 2, 2015 *+ 99 comments

Why Static Site Generators Are The Next Big
Thing

QUICK SUMMARY o At StaticGen, our open-source directory of static 18 min read

ABOUT THE AUTHOR website generators, we've kept track of more than a hundred generators 9 Coding, Tools, Static
Generators

Matt Biilmann has been for more than a year now, and we'’ve seen both the volume and popularity

- , . , , , . . W Share on Twitter
building developer tools, of these projects take off incredibly on GitHub during that time, going s e

content management from just 50 to more than 100 generators and a total of more than 100,000

systems and web stars for static website generator repositories. Influential design-focused

infrastructure for more companties such as Nest and MailChimp now use static website

than a decade. He is co-

generators for their primary websites. Vox Media has built a whole
founder and CEO of

By publishing system around Middleman. Carrot, a large New York agency
Netlify, ... More about

Viathioe and part of the Vice empire, builds websites for some of the world’s largest
128S...

brands with its own open-source generator, Roots. And several of Google’s

properties, such as “A Year In Search” and Web Fundamentals, are static.

%
K '
é\gﬁ netlify

Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx
%% . N - :
V= netl |fy Products Pricing Docs Blog Q Contact sales Login Signup >

Introducing: Netlify Dev. Run our entire platform right on your laptop. Learn more -

Build, deploy, and manage -
modern web projects .\

An all-in-one workflow that combines global deployment, /

continuous integration, and automatic HTTPS. And that’s just the
beginning.

Get started for free

Deploy your site in seconds*

‘ [
e'\érﬁ netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

shawn wang's team v Sites Domains Members Auditlog Team settings

shawn wang's team v Sites > trusting-lichterman-ee04c1

@ Deploys Sites » trusting-lichterman-ee04c1

| Analytics
Site settings 3
£+ Site setti ® Deploys .
Build & deploy
| Analytics

S Forms ¢ Site settings Build Settings

Build & deploy
€ Function Repository: Link to a different repository -
Domain management

A Identity Base directory:
Access control

ere we will look for

AR Large Me

ADD-ONS
P Split Tes Build command: cd docusaurus/website && npm i && npm run build

W Forms
Publish directory: docusaurus/website/build

€3 Functions

Deploy log visibility: © Public logs

Anyone with a deploy detail URL will be able to access the logs.

A Identity ‘ -

Private logs

Only site administrators will be able to access the logs.

AR Large Media

¥ Split Testing Learn more about common configuration directives in the docs ~

ines ‘ Oclif Conf, May 2019 ‘ @swyx

CLI Iterations

e VO: ¥ Commander.js
e V1: £ Cobra
e V2: '+O0clif

https://www.netlify.com/blog/2018/09/10/netlify-cli-2.0-now-in-beta-/#our-cli-journey

https://github.com/netlify/cli/blob/v1.2.3/package.json
https://github.com/netlify/netlifyctl
https://www.netlify.com/blog/2018/09/10/netlify-cli-2.0-now-in-beta-/#our-cli-journey

‘ [
e'\érﬁ netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

Read the docs: https://cli.netlify.com
Support and bugs: https://github.com/netlify/cli/issues

Netlify command line tool

VERSION
netlify-cli/2.0.0-beta.2 darwin-x64 node-v10.4.1

USAGE
$ netlify [COMMAND]

COMMANDS
deploy Create a new deploy from the contents of a folder
init Configure continuous deployment for a new or existing site
link Link a local repo or project folder to an existing site on Netlify

login Login to your Netlify account

logout Logout of your Netlify account

open Open settings for the site linked to the current folder
sites Handle various site operations

status Print status information

unlink Unlink a local folder from a Netlify site

watch Watch for site deploy to finish

‘ [
%'5"6 netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

AMstack.or

What is the JAMstack?

Your project is built with the JAMstack if it meets three key criteria:

JavaScript

Any dynamic programming during the request/response cycle is handled by
JavaScript, running entirely on the client. This could be any frontend

framework, library, or even vanilla JavaScript.

APIs

All server-side processes or database actions are abstracted into reusable
APIs, accessed over HTTPS with JavaScript. These can be custom-built or

leverage third-party services.

Markup

Templated markup should be prebuilt at deploy time, usually using a site

generator for content sites, or a build tool for web apps.

http://JAMstack.org

‘ |3
e'\érﬁ netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

% .
%'\é,ﬁ netllfy Products Pricing Docs Blog Q Contact sales Login Signup >

By Matt Biilmann & Chris Bach in News & Announcements * March 2 0, 2018

Netlify's AWS Lambda functions
bring the backend to your
frontend workflow

Today we're officially releasing Functions, which make deploying serverless AWS
Lambda functions on Netlify as simple as adding a file to your Git repository. We're
also officially releasing Identity and Forms out of beta, so now you can add dynamic
functionality to your site without setting up servers, writing server-side code, or

managing multiple accounts.

Since adding these components is as easy as git push and manageable without a

‘ |3
e'\éﬁ netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

PROBLEM

LOCAL EMULATION

The Rise of Dev Servers

‘ DevServer ‘ | Browser ‘

localhost:5000 ——» localhost:5000

Configuring Proxies in Dev Servers

‘ Functions ‘

localhost:9999

\4

‘ DevServer ‘ | Browser |

localhost:5000 ——» localhost:5000

‘ [
e'\érﬁ netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019

Configuring Proxies in Dev Servers

& GitHub, Inc. [US] | https://github.com/!

.prettierrc fix reload relisten bug 29 days ago
CHANGELOG.md 1.4.13 8 days ago
LICENSE chore: add license file a month ago
README.md Update README.md 8 days ago
package.json 1.4.13 8 days ago

yarn.lock add version and gh-release 29 days ago

Netlify Lambda

This is an optional tool that helps with building or locally developing Netlify Functions with a simple webpack/babel build
step.

The goal is to make it easy to write Lambda's with transpiled JS/TypeScript features and imported modules.
» Multiple ways to deploy functions on Netlify

» Netlify Dev vs. Netlify-Lambda

Installation

We recommend installing locally rather than globally:

yarn add netlify-lambda

This will ensure your build scripts don't assume a global install which is better for your CI/CD (for example with Netlify's
buildbot).

‘ |3
e'\érﬁ netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

Netlify Dev — our entire
platform, right on your laptop

PROBLEM
SOLVING “DEPLOY AND PRAY”

Netlify Dev: Wrapping the DevServer

DevServer

Llocalhost:5000—

Functions \ 4
-rLocalhost:5000— EEEEEE—

E_. Netlify Browser
____J———> Dev
env vars L—1localhost:8888——» localhost:8888—

‘ |3
e'\érﬁ netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

New Commands, New Config

Branch: master v | netlify-dev-plugin / src / commands / dev /

netlify.toml dev block example with _redirect file
biilmann Fix live tunnel port when proxyPort is taken - [dev]

command="yarn dev"
port=5000
publish="public" # this is new

exec.js make tests actually work

index.js Fix live tunnel port when proxyPort is taken

Pick a template js—fauna-graphgl
Branch: master v netlify-dev-plugin / src / commands / functions / name your function: fauna-graphql
Creating function
sw-yx fix broken templating Created built-lambda/fauna—-graphql/fauna—-graphql.js
Created built-lambda/fauna—-graphql/package.json
Created built-lambda/fauna—-graphql/schema.graphql
Created built-lambda/fauna—-graphql/sync-schema.js
installed dependencies for fauna-graphql
create.js fix broken templating checking Netlify APIs...
installing addon: pgEULE
Creating addon
list.js make tests actually work Add-on "fauna" created for netlify-gotrue-in-react
¢ Injected addon env var: FAUNADB_ADMIN_SECRET
¢ Injected addon env var: FAUNADB_SERVER_SECRET
¢ Injected addon env var: FAUNADB_CLIENT_SECRET
This template has an optional setup script that runs after addon install. This can be helpful
for first time users to try out templates. Run the script? (y/N)

build.js make tests actually work

index.js unhide functions command for docs

s, ,
V% netlify

X7, Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019

@swyx

Private Dev with Oclif Plugins

v netlify-dev-plugin

Netlify CLI plugin for local dev experience. If you're interested to work on Netlify Dev and other product initatives fulltime,
we are hiring.

Contributing/Local Development

Thanks for contributing! You'll need to follow these steps to run Netlify CLI and netlify-dev-plugin locally:

. uninstall any globally installed versions of netlify-cli
. clone and install deps for netlify/cli

. npm link from inside the cli folder

. clone and install deps for this repo

. Inside the netlify-dev-plugin folder, run yarn link

. inside the c1i folder, run yarn link "netlify-dev-plugin"

Now you're both ready to start testing netlify dev and to contribute to the project! Note these are untested
instructions, please get in touch if you're unable to follow them clearly and we'll work with you. Or ping @swyx.

Hacker News new | threads | past | comments | ask

‘b
‘ $'\€‘§ netlify ‘ Adaptive Intent-Based CLI State Machines ‘ Oclif Conf, May 2019 ‘ @swyx

Netlify Dev Requirements

Read netlify.toml config
e Check login state

e Check site link state
e Check folder exists
e Check folder exists
e Respect flag overrides

o for what’s missing

e
"b 0
‘ %\‘4’6 netlify

‘ Adaptive Intent-Based CLI State Mach

Help Docs

Flags > Args

-=vVersion

stdout vs. stderr
Errors, DEBUG="

Be

ANCY

ines ‘ Oclif Conf, May 2019

Discovering 12 Factor Apps

‘ @swyx

Prompting

Tables

(Perceived) Speed
Contributions
Sub:commands

XDG-spec

https://medium.com/@jdxcode/12-factor-cli-apps-dd3c227a0e46

CLI Cheatsheet

https://e1thub.com/sw-yx/cli-cheatsheet

https://github.com/sw-yx/cli-cheatsheet

‘ [
%'56 netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx
A\ g

PART Ii

THE 13th FACTOR

% ne
tli
iITy

r/
reactjs

"\%b netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019

Adaptive Web Design

Crafting Rich Experiences with Progressive Enhancement By Aaron Gustafson

" Developer Discover Design Develop Distribute Support Account

Adaptive user interface

From Wikipedia, the free encyclopedia

For other uses, see AUI (disambiguation). ‘ ‘ ” BU i Id i ng Ad a pt ive U Ser I nte rfa CeS

7 \ I 4
An adaptive user interface (also known as AUI) is a user interface (Ul) which & ‘ | A ‘ : : - : : : :
dants. that is o o and ol 10 1h e of th - LR - | ,{‘ﬁ" By supporting displays of any size and orientation, your iOS apps can deliver
adapts, that Is changes, 1S fayout an <1ae;men S 10 Ihe needs of the user or contex Q great user experiences. Use these resources to create adaptive uiser interfaces in
and is similarly alterable by each user.'I = . your apps. For design recommendations, read the Human Interface Guidelines.
These mutually reciprocal qualities of both adapting and being adaptable are, in a
true AUI, also innate to elements that comprise the interface's components; portions DAPT ‘VE M qDAPT’ VE w
of the interface might adapt to and affect other portions of the interface. A ES\GN VEB D -
This later mechanism is usually employed to integrate two logically distinct WEB D g i ES,GN)
. , L jences ti ‘
components, such as an interactive document and an application (e.g. a web EDITION Crafting Rich Expg\sg‘igement) }')”8 Rich Experiences (-
browser) into one seamless whole 'w Riders) with Progressive ti PP\ "08ressive Enhancement
o | | | remy Keith oy harn Gustalsn View Controllers Dynamic Text
The user adaptation is often a negotiated process, as an adaptive user interface's L) 4 by Jeremy Ke
. o by A Use the latest view controller advancements in UIKit to make TextKit is the powerful text engine and API in iOS that
designers ignore where user interface components ought to go while affording a r Y Aaron Gustafsop : : . : : . . .
oreword by Jeffrey Zeldman it even easier to adapt your user interface to any size or provides sophisticated text handling and typesetting

means by which both the designers and the user can determine their placement, AMAZON

orientation. See how to effectively use size classes and trait capabilities. Learn how to use TextKit to draw and manage
— collections to ensure a great user experience for any display text with adaptive user interfaces.

size or context.
BARNES & NOBLE [Y Text Programming Guide for iOS

often (though not always) in a semi-automated, if not fully automated manner.

An AUl is primarily created based on the features of the system, and the knowledge

levels of the users that will utilize it. ® Making Apps Adaptive, Part 1 ® Introducing Text Kit
PEARSON ® Making Apps Adaptive, Part 2 ® Advanced Text Layouts and Effects with Text Kit
Contents [hide] ® What's New in UIKit Dynamics and Visual Effects ® Using Fonts with Text Kit
1 Advantages ® Building Adaptive Apps with UIKit

2 Disadvantages os | Errata

3 Types
3.1 Adaptive presentation
3.2 Adaptive navigation

4 Uses in industry

‘ |3
e'é? netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

Adaptive Interfaces

“Instead of designing web pages and content to respond to
various devices... developers are trying to create interfaces that
respond to individual users. These interfaces would adapt on the

fly to the current user and collect data over time to anticipate each
user’s actions and preferences.”

https://speckyboy.com/adaptive-user-interfaces/

https://speckyboy.com/adaptive-user-interfaces/

‘ |3
$'\€‘§ netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

THE 13th FACTOR

STATE

‘ |3
e'é? netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

PROBLEM |

STATE IS HARD

‘ |3
e'\érﬁ netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

write-file-atomic

fs.writeFil

an

ify(data));

This is an extension for node's fs.writeFile that makes its operation atomic and allows you set ownership (uid/gid of
the file).

var writeFileAtomic = require('write-file-atomic')
writeFileAtomic(filename, data, [options], [callback])

o filename String

o data String | Buffer

e options Object | String l f y (

o chown Object default, uid & gid of existing file, if any

BN

fs.writeFil
Object.as ! g Nomber

encoding String | Null default = 'utf8'

) fsync Boolean default = true
mode Number default, from existing file, if any
tmpfileCreated Function called when the tmpfile is created

e callback Function

Atomically and asynchronously writes data to a file, replacing the file if it already exists. data can be a string or a buffer.

path.resolve(process.cwd(), 'foo', '/store.json')

path.join(process.cwd(), 'foo', '/store.json')
path.resolve(process.cwd(), 'store.json')
path.join(process.cwd(), 'store.json')
path.resolve(__dirname, 'store.json')

path.join(__dirname, 'store.json')

Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

Deploying in windows creates paths with backslashes that it
don't work once deployed

G4+ L'l futuregerald opened this issue on Feb 20, 2018 - 3 comments

i ' Add a library for cross-0OS (okay, Windows) compatibility :)

[

verythorough opened this issue on Mar 27 - 1 comment
Respect the XDG base directory specification

veryth - _ .
‘ Y Open ‘ dsifford opened this issue on Jul 4, 2018 - 8 comments

The n¢

with th
ke | dsifford on Jul 4, 2018 - edited ~ 4x Unsubscribe o]

In Slac

anothe Mark as unread
Hello,

Relate«

" | searched in the issues here and shockingly | haven't found this mentioned.
env, i

6 participants

Currently, cosmiconfig searches up the parent tree from the working directory, stopping at $HOME , ﬂn Q u i’;

In any which is fine and most, | would assume, are okay with this.

However, for filesystem psychopaths like myself, it pains me to have to move any sort of user
configuration file out $XDG_CONFIG_HOME/project-name/ directory (usually, ~/.config/project-name/)
and pollute my home directory.

Any thoughts on adding this as a final search path?
You can read up on the specification here and here.
In short, using prettier as an example, I'd imagine the workflow to go like this...

1. Perform the current lookup traversal as it is done right now.

2. If nothing found, check the following:

e $XDG_CONFIG_HOME/prettier/config

Don’t roll your own

https://github.com/sindresorhus/conf

https://github.com/jonschlinkert/data-store

https://github.com/davidtheclark/cosmiconfig

(useful for reading config in .rc files as well but
needs config for XDG compliance)

https://github.com/sindresorhus/conf
https://github.com/jonschlinkert/data-store
https://github.com/davidtheclark/cosmiconfig

‘ [
e,'&"s netlify Adaptive Intent-Based CLI State Machines

< Oclif Conf, May 2019

@swyx

const Conf = require('conf');

const config = new Conf();

config.set('unicorn', '&');
console.log(config.get('unicorn'));
[/=> "'

// Use dot-notation to access nested properties
config.set('foo.bar', true);
console.log(config.get('foo'));

//=> {bar: true}

config.delete('unicorn');
console.log(config.get('unicorn'));
//=> undefined

‘ Adaptive Intent-Based CLI State Machines ‘ Oclif Conf, May 2019 ‘ @swyx

A full model of CLI State

e CLIFlags
e Project State

e Project Filesystem

e Machine State

Remote user account settings
e Remote team account settings
e Remote global defaults

Solution I: cli-state

import <
1n1tCLIState,
globalState,
projectState

} from 'cli-state';

‘ Adaptive Intent-Based CLI State Machines ‘ Oclif Conf, May 2019 ‘ @swyx

Offline State = Cache?

e CLI Flags
e Project State
e Project Filesystem

e Machine State

e Cached user account settings
e Cached team account settings
e Cached global defaults

PROBLEM II

CLI’S AS INTOLERANT
PROCEDURE CALLS

*'\gb netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

00 B docs-spike — -bash — 72x21
‘todds-mbp-2:docs-spike toddmorey$ netlify dev]

Netlify Dev @ Starting Netlify Dev...
Netlify Dev ® No dev server detected, using simple static server
Netlify Dev @ Unable to determlne publlc folder for the dev server.

Setup a netly el 2 |\ N_ag | de€ : on _t0 _sneci # ols

everdev 51 days ago [-]
er setti ngs. Looks super cool and super happy with Netlify hosting.

[’COddS-mbp-Z . G I just gave it a spin though and got this:

Netllf}’ De\/ | Netlify Dev ® Starting Netlify Dev...
Netlify Dev @ Overriding dist with setting derived from netlify.toml [dev] block: null
Netlify Dev ® No dev server detected, using simple static server
Netlify Dev @ Unable to determine public folder for the dev server.
Setup a netlify.toml file with a [dev] section to specify your dev server settings.

n/docs/netlify-toml-reference/) don't seem to include details on what to include
to work.

Anyone have this tool working locally?

/7 points by swyx 51 days ago |[-]

hello! thanks for the reportI i just pushed a small patch that now has some more helpful messages.. havent ironed out all the states yet and
cant keep everything in my head!

https://github.com/netlify/netlify-dev-plugin/commit/1c6df00...

Oclif Conf, May 2019 @swyx

‘ [
NI netlify Adaptive Intent-Based CLI State Machines

Context is hard

11 You Retweeted

P e
_\. At
NG, i R 7Y
LA R AN AN
AN % A7 \\ 0 {'?“".:..7
\ T e AR SN
S @JenMsft
s SRR T ¢
% SRS
AL .

>> What do we want?
Natural language processing!

>> When do we want it?

When do we want what?

11:24 AM - May 25, 2019 - Twitter Web App

2K Retweets 9.6K Likes

‘ [
RIS netlify Adaptive Intent-Based CLI State Machines

X7, Oclif Conf, May 2019 @swyx

Handling Incomplete State

5. Handle things going wrong

Things go wrong in CLIs much more often than in web apps. Without a Ul to

- - guide the user, the only thing we can do is display an error to the user. This is
o r u . |
WO St - I I e n t Ex I t expected behavior and part of using any CLI.

First and foremost, make your errors informative. A great error message

e OK: Throw Error e
o Better: Error Message

. Error title

. Error description (Optional)
. How to fix the error

. URL for more information

For example, if our CLI errored out with a file permission issue, we could

show the following:

$ myapp dump -o myfile.out

Error: EPERM - Invalid permissions on myfile.out

Cannot write to myfile.out, file does not have write permissions.
Fix with: chmod +w myfile.out

https://github.com/jdxcode/myapp

‘ Adaptive Intent-Based CLI State Machines ‘ Oclif Conf, May 2019 ‘ @swyx

Handling Incomplete State

e Worst: Silent Exit
e OK: Throw Error
e Better: Error Message

e Good: Prompt for fix

e Great: Adaptive prompting

‘ [
%'5‘6 netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx
A\ g

class Example2 extends Command A

[/ «us
async run() {

// ..
myBusinesslLogic(state.name)
// throws!

h
h

‘ [
%'5‘6 netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx
A\ g

class Example2 extends Command {

[/ &
async run() {

/] ...
if (state.name) {

myBusinesslLogic(state.name)
}

// silent error

h
h

‘ b,
e,'z's netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx
A\ g

const chalk = require("chalk")
class Example2 extends Command <{

[/ «us
async run() {

// s
if (state.name) {
myBusinesslLogic(state.name)

} else {
this.error(you did not provide ${ichalk.yellow(name) . please retry)
}

h
h

Oclif Conf, May 2019 @swyx

)
%# netlify

S Adaptive Intent-Based CLI State Machines

const chalk = require("chalk")
class Example2 extends Command <{

[/ «a-
async run() {

/] ...
if (state.name) {
myBusinesslLogic(state.name)
} else {
this.error(Error code’)
this.error(Error title’)
this.error(Error description (Optional))
this.error(How to fix the error URL for more information)

‘ [3
é,'ﬁ‘p netlify Adaptive Intent-Based CLI State Machines ‘ Oclif Conf, May 2019 @swyx

“const chalk = require("chalk")
const { prompt } = require("enquirer")
class Example2 extends Command {

[/ «us
async run() A

/] .
if (state.name) {
myBusinesslLogic(state.name)
} else {
const name = prompt("give me a name")
if (name) {
myBusinesslLogic(name)
} else {
this.error(Error code)
this.error(Error title’)
this.error(Error description (Optional) ")
this.error(How to fix the error URL for more information’)

‘ |3
NI netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

“const chalk = require("chalk")
const { prompt } = require("enquirer")
class Example2 extends Command <{

[/ &us
async run() A

// .
if (state.name) {
myBusinesslLogic(state.name)
} else {
const name = prompt('"give me a name")
if (name) {
console. log('"next time you can pass a ——name flag!")
myBusinesslLogic(name)
} else {
this.error(Error code’)
this.error(Error title’)
this.error(Error description (Optional) ")
this.error(How to fix the error URL for more information)

KEY REALIZATION

WE WRITE CLI’S
LIKE WE WROTE JQUERY

‘ |3
e'\érﬁ netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

Mycli 10g€1N e——— | OZ 1N .]S

mycli deploy =——— deploy.js

‘ |3
e'\érﬁ netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

Mycli 10g€1N e——— | OZ 1N .]S

mycli deploy deploy.js

‘ |3
e'\érﬁ netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

oclif JM Getting Started oclifconf APl Reference Blog Discuss GitHub Q Search

Getting Started Running Commands Programmatically

Introduction
Features If you need to run a command from another, or programmatically run a command in another codebase, there are a couple options.

FAQs N : : : : : :
First, it is generally a bad idea to run a command directly as the command exports a user interface, not a code interface. It's a design smell that should

Single-command CL| rarely (if ever) be used. Generally speaking, it's better to break up the code so that it can be called directly rather than as a command. We'll show this better
Multi-command CLI method first.

Generator Commands

AP| Reference Sharing code with modules

Commands For example, if we use heroku config as an example, we could have a command that outputs the config vars of an app to the screen like this:

Command Arguments

./src/commands/config.ts
Command Flags

Configuration
export class HerokuConfig extends Command {

static flags = {
Hooks app: flags.string({required: iD)
¥

Topics

Plugins

async run() {
How to const {flags} = this.parse(HerokuConfig)
Release const config = await api.get(/apps/${flags.app}/config-vars’)
_ for (let [key, value] of Object.entries(config)) {
Testing this.log(${key}=${value})
Running Commands }
Programmatically 3

}

Aliases

‘ |3
e'\érﬁ netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

mycli login login.js

utils/login.js

myc]_-i dep]_oy TEERTTTRRTTRRTTTRRT] = deploy.js

KEY REALIZATION

COMMAND != INTENT

Use a State Machine

https://statecharts.github.io/xstate-viz/

https://statecharts.github.io/xstate-viz/

‘ [
$'\€§ netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

‘ [
%'5‘,& netlify Adaptive Intent-Based CLI State Machines Oclif Conf, May 2019 @swyx

ines ‘ Oclif Conf, May 2019 ‘ @swyx

Shortest Paths

https://xstate.js.org/docs/packages/xstate-graph/#api

https://xstate.js.org/docs/packages/xstate-graph/#api

Solution ll: cli-state-machine

import <
Action,
State,
1ni1tStateMachine,
processStateMachine
} from 'cli-state—-machine'

Defining State

export const loggedInState: State = {
statelId: 'loggedIn’',
getValue: async () => loginStatus,
assert: async (status: boolean) => status === true,

h

Defining Action

export const loginAction: Action = {
actionId: 'loginAction’,
beforeState: loggedOutState,
afterState: loggedInState,
execute: async () => {
// console.log('logging 1n')
loginStatus = true
t
¥

Defining another Action

export const deployAction: Action = {
actionId: 'deploy',
beforeState: loggedInState,
execute: async () => {
console.log('deployed!")
1 ¥
}

Running the State Machine

initStateMachine([
loginAction,
LlogoutAction,
dep loyAction

1)

// map 1ntents to actions
// let StateMachine search for valid adjacent states
await processStateMachine(deployAction, {})

ed CLI State Machines ‘ Oclif Con ‘ @s

More 1o Do

e Binding flags to States
e Helper functions for:
e file/folder existence
e Prompting for required field
o 777

e Visualization output

Principle: Componentized
and Declarative Business Logic

the Full State Machine

// allActions and otherState defined above

initCLIState();
const cliState = { projectState, globalState, ...otherState }

initStateMachine(allActions)
await processStateMachine(deployAction, cliState)

@@@@@

Help us build it

netlify.com/careers
github.com/sw-yx/cli-state

github.com/sw-yx/cli-state-machine

https://github.com/sw-yx/cli-state
https://netlify.com/careers/
https://github.com/sw-yx/cli-state-machine

ADAPTIVE

INTENT-BASED
CLI STATE MACHINES

swyXx.io/talks
npm I -g netlify-cli

‘ |3
%'5"6 netlify Adaptive Intent-Based CLI State Machines

Oclif Conf, May 2019

Principles of HCI

The DESIGN
of EVERYDAY

| Don Norman's

Six Design
Principles

NORMAN

USABILITY
INSPECTION |
METHODS Jakob Nielsen's

/*;’*S'P\ Ten Design
(‘ e Heuristics

JAKOB NIELSEN- ROBERT L. MACK

=

Larry |

D

- E(Locl\{{\to\bd
B SOFTWARE
B FOR USE

C ()ﬁgtzmtinc L 3 I-I-y

Constantine’s
and Lucy
Lockwood's
Six Principles

Ronald Mace's
Seven
i Principles of
Universal Design U N IVE rs3 l
Design

12 General Principles of HCI

Z

Discoverability

-

Affordances

«Tﬁ

Flexibility

=]

Constraints

N

Feedback

m O

Structure Simplicity

Perceptibility Ease

-
;O

Mapping

)

'S
Tolerance

=

Comfort

EEE
EEE
EEN

Consistency

Documentation

