
Hands-on with 
Ember Octane
A practical look at the 
latest from Ember.js



Timeline

3.12

August 5th
No new features

LTS Candidate

3.13 Beta

3.13

September 16th
3.12 becomes LTS

3.14 Beta

First release that contains 
all of Octane’s features

3.14

First release of Ember that 
defaults to Octane

Ember Inspector 



Classic vs. Octane



Application Template Wrapper

Classic Mode Octane Mode

$ ember feature:disable application-template-wrapper 



jQuery

Classic Mode

• jQuery is included by 
default.
• Ember components have a 

this.$ method.

Octane Mode

• jQuery is not included by 
default

$ ember feature:disable jquery-integration



Template-only Components

Classic Mode

• Template-only components get 
an implicit component class.

Octane Mode

• Template-only components have 
no (implicit or otherwise) 
component class.

$ ember feature:enable template-only-glimmer-component



Observers

Classic Mode

• Observers fire synchronously by 
default

Octane Mode

• Observer fire asynchronously by 
default

$ ember feature:enable default-async-observers



Idiom Changes



Ember vs. Standard Class Syntax

Classic Mode Idiom

• subclass from framework classes 

Route.extend({ ... })

Controller.extend({ ... })

Octane Mode Idiom

• subclass from framework classes 
using JavaScript class syntax 

class extends Route {...}

class extends Controller {...}

Migration Guide: https://tinyurl.com/octane-migration

https://tinyurl.com/octane-migration


Computed vs. @tracked

Classic Mode Idiom

• State that could influence the 
output ("mutable state") is 
marked using .set or 
Ember.set and use computed 
from @ember/object to describe 
derived state. Computed 
properties enumerate their 
dependent keys explicitly.

Octane Mode Idiom

• State that could influence the 
output is marked as @tracked. 
No other annotations are 
needed.

Migration Guide: https://tinyurl.com/octane-migration

https://tinyurl.com/octane-migration


Components

Classic Mode Idiom

• Components subclass from 
@ember/component. They use 
APIs like classNameBinding to 
configure the root element, and 
use lifecycle hooks on the 
component class to interact with 
the DOM.

Octane Mode Idiom

• Components subclass from 
@glimmer/component. They 
describe all elements, including 
the root element, in the template. 
They use modifiers to interact 
with the DOM.

Migration Guide: https://tinyurl.com/octane-migration

https://tinyurl.com/octane-migration


{{action}} vs. {{on}}

Classic Mode Idiom

• To handle events on a 
component's root element, 
create a method on the 
component that corresponds to 
the event. To handle events on 
another element, use the 
{{action}} helper and put the 
action in the actions hash in 
your component.

Octane Mode Idiom

• To handle events on an element, 
use the {{on}} helper.

Migration Guide: https://tinyurl.com/octane-migration

https://tinyurl.com/octane-migration


Curly Braces vs. Angle Brackets

Classic Mode Idiom

• Components are invoked using 
{{component-name}} and 
{{#component-name}} syntax.

Octane Mode Idiom

• You invoke components using 
<ComponentName> syntax.

Migration Guide: https://tinyurl.com/octane-migration

https://tinyurl.com/octane-migration


Implicit vs. required this

Classic Mode Idiom

• You can refer to properties on 
the component as 
{{propertyName}}

Octane Mode Idiom

• References to properties on a 
component must be 
{{this.propertyName}}

Migration Guide: https://tinyurl.com/octane-migration

https://tinyurl.com/octane-migration


File Layout

Classic Mode Idiom

• A component's files are in two 
places: 

app/components/component-
name.js

app/templates/components/co
mponent-name.hbs

Octane Mode Idiom

• A component's files are in the 
same place:

app/components/component-
name.js

app/components/component-
name.hbs

Migration Guide: https://tinyurl.com/octane-migration

https://tinyurl.com/octane-migration


A reasonable approach

Migration



Recommended Migration Order

1. Migrate away from observers before migrating to @tracked



Recommended Migration Order

2. The template codemods are generally easier and more automatable, 

so they should be done first: 

• ember-angle-brackets-codemod

• ember-no-implicit-this-codemod

https://github.com/ember-codemods/ember-angle-brackets-codemod
https://github.com/ember-codemods/ember-no-implicit-this-codemod


Recommended Migration Order

3. Classic Component Changes

Step 3.1: remove use of implicit this



Recommended Migration Order

3. Classic Component Changes

Step 3.2: migrate to tagName:’’



Recommended Migration Order
Step 3.2: migrate to tagName:’’

1. wrap your component in a root element

2. Change classNames to class="..."
3. Change classNameBindings to class={{...}}
4. Change attributeBindings becomes attr={{...}}
5. Change methods like click to {{on "click"}}
6. move DOM manipulation logic to modifiers (or at least ember-

render-modifiers)

https://github.com/emberjs/ember-render-modifiers


Recommended Migration Order

3. Classic Component Changes

Step 3.3: migrate {{action}} and the actions hash to {{on}} in the 

template and @action in the component.js file



Recommended Migration Order

3. Classic Component Changes

Step 3.4: migrate to native class syntax



Recommended Migration Order

3. Classic Component Changes

Step 5: migrate .set and computed properties to @tracked



Codemods

Native class 
codemod

Angle bracket 
codemod

No implicit 
this codemod

https://github.com/ember-codemods



Reference Materials

• https://ember-learn.github.io/ember-octane-
vs-classic-cheat-sheet/

• https://codingitwrong.com/2019/07/23/em
ber-component-cheat-sheet.html



Extra Support

• ember-template-lint
• Updates for Octane support
• New a11y rules

• #topic-octane-migration



Thank you!


