Make Your Data

FABulous

Philipp Krenn

(@xeraa

@ elastic

Developer &

@elastic

What is the perfect
datastore solution?

It depends...

Pick your tradeoffs

CAP Theorem

Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web

Services
Seth Gilbert* Nancy Lynch®
Abstract

When designing distributed web services, there are three
properties that are commonly desired: consistency, avail-
ability, and partition tolerance. It is impossible to achieve
all three. In this note, we prove this conjecture in the asyn-
chronous network model, and then discuss solutions to this
dilemma in the partially synchronous model.

Consistent

"[...] a total order on all operations such
that each operation looks as if it were
completed at a single instant.”

Available

"[...] every request received by a non-
failing node in the system must result in a
response.”

Partition Tolerant

"[...] the network will be allowed to lose
arbitrarily many messages sent from one
node to another.”

Partition
Tolerance

Availability

https://berb.github.io/diploma-thesis/original/061_challenge.html

https://berb.github.io/diploma-thesis/original/061_challenge.html

Misconceptions

Partition Tolerance is not a choice in a
distributed system

Misconceptions

Consistency in ACID is a predicate

Consistency in CAP is a linear order

/dev/null breaks CAP: effect of
write are always consistent,
it's always available, and all
replicas are consistent even

during partitions.

@ elastic

https://twitter.com/ashic/status/591511683987701760

FAB Theory

Fast

Near real-time instead of batch processing

Accurate

Exact instead of approximate results

Big

Parallelization needed to handle the data

Say Big Data

O
q] ' R‘/'
o/
-)
/ ‘
5

one more tinie

Accurate !

@elastic

elasticsearch

Shard

Unit of scale

Y- X . N - - . N, -)
Y e EJ.* T e Ervf o 3 . g -
- v o'.’ \'\ ’f(' \‘ o'.' - '\ ‘/‘ J'

"The evil W|zard Mondam had attempted
to gain control over Sosaria by trapping its
essence in a-crystal. When the Stranger at
the end of Ultima | defeated Mondain and
shattered the crystal;the crystal shards

each held a. refracted copy of Sosarla.

~;f:: http I waw raphkoster com[zooglmIosldatabase-shardlng_ |
DAL N N came-from uo/ -

R — “.. .. . ’ . '-- ’ o) P
g ‘ ‘ - ™ . 2. A

-
y
> - " . - | % ™ Y
‘.' "‘.) ~¢" : ‘.' ' "’ N .‘-‘) \o' A
v e i v ~r
- . ~) , B - . . .
. - - - -~ 4 N
n N A R) RN N . N elastic
e . vW- . . " e '..".' - r > /"" . : " ."' » : .
- - . - ‘ > . i -) . : B . -
. - "\ \ "\."\ - '.\ ‘.\ S - - \.~ o " - N ‘- N :
< . - * ¢ e 7 _ h . »r - < . » . - »

http://www.raphkoster.com/2009/01/08/database-sharding-came-from-uo/
http://www.raphkoster.com/2009/01/08/database-sharding-came-from-uo/

Terms
Aggregation

Word Count Word Count

Luke 64 Droid 13

R2 31 3PO13
Alderaan 20 Princess 12
Kenobi 19 Ben 11
Obi-Wan 18 Vader 11
Droids 16 Han 10
Blast 15 Jedi 10
Imperial 15 Sandpeople 10

PUT starwars

{

"sett1
"num
"num

}

}

ngs": {
per of shards": 5,

per_of _replicas”": 0

o s Y s Y st W s WY st W s WY atnn WY st
[J
[J

"1ndex"
"word"
"Index"
"word"
"Index"
"word"
"Index"
"word"

{ " index"
"Luke" }
{ " _index"

"Luke" }

{ " _index"

"Luke" }

{ " index"

"Luke" }

"starwars", " type"
"starwars"”, " type"
"starwars”, " type"
"starwars”, " type"

"_dOC"’
"_dOC"’
Il_dOCII’

"_dOC" .

"routing":
"routing":
"routing":

"routing":

IIOII

II1|I

l|2|l

l|3|l

Pk
I
I
I

Visualize / New Visualization (unsaved) Save Share Refresh

Search... (e.g. status:200 AND extension:PHP) Uses lucene query syntax n
Add a filter 4
starwars
Data Options > B

Metrics

n Tag Size Count “an B

vader
ouckers Alderaan
3P0

8 Droid
Aggregation o
Terms - Imnerlal Blast
Field — o
word keywort . Kenobi R2 Droids
Order By i = i

ledi Ohi-Wan Princess

metric: Count

Order sze sandpeople

Descending ¥ 25

<>

Group other values in separate bucket i

Show missing values (1]

Fasbarmas | ablaal

GET starwars/ search

{
"query": {
"match": {
"word": "Luke"

}
}
}

"took": 6,

"timed out": false,

" shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": ©

|

"hits": {
"total": 64,
"max_score": 3.2049506,
"hits": [

{

_1ndex": "starwars",
" type": " _doc",
" 1d": "Ovvdy2IBkmPuaFRg659y",
" score": 3.2049506,
" routing": "1",
_source": {
"word": "Luke"

}
b

GET starwars/ search

{
"aggs": {
"most common": {
"terms": {
"field": "word.keyword",
"s1ze": 1

"took": 13,
"timed out": false,
" shards": {

"total": 5,

"successful": 5,

"skipped": 0,

"failed": ©

},
"hits": {

"total": 288,

"max_score": 0,

"hits": []

F
"aggregations": {

"most_common": {
"doc_count_error_upper_bound": 10,
"sum_other_doc_count": 232,
"buckets": [

{
"key": "Luke",
"doc_count": 56

~ A A A

o [t W s WY st WY s WY et W s W e W s W
[J [J
[J

"Index"
"word"
"Index"
"word"
"Index"
"word"

"Index"
"word"
"Index"
"word"
"Index"
"word"
"Index"
"word"

{ " _index" : "starwars", " _type"
"Luke" }
: { " _index" : "starwars", " _type"
"Luke" }

1 " _index" : "starwars", " _type"
"Luke" }
: { " _index" : "starwars", " _type"
"Luke" }
: { " _index" : "starwars", " _type"
"Luke" }
: { " _index" : "starwars", " _type"
"Luke" }
: { "_index" : "starwars", " _type"
"Luke" }

@ elastic

"_dOC" ,
"_dOC" .

"_dOC" .

"_dOC"’
Il_dOCII’
Il_docll’

Il_dOCII ,

"routing":
"routing":

"routing":

"routing":
"routing":
"routing":

"routing":

IIO"

lllll

l|2|l

II8|I

ll9ll

ll@ll

ll@ll

shard

Routing

hash(_routing) %

primary_shards

GET cat/shards?index=starwarsé&v

1ndex

starwars
starwars
starwars
starwars
starwars

shard

O L N B W

orirep s
D S
D ST
D ST
D ST
D ST

t

>>> > P>
7RI R

at

R

e

1 1 1 1
m T rmi rrl rm
O U U U U

do

oS
538
26
/1
63
/0

1p
172
172

172.

172
172

.19,
.19,
19.
.19,
.19,

OB ONONBONOC,
N N DNDNNDN

node

Q88C3vO0
Q88C3vO0
Q88C3vO0
Q88C3vO0
Q88C3vO0

(Sub) Results Per Shard

shard size = (size 1.5 + 10)

How Many?
Results per shard

Results for aggregation

"doc_count_error_upper_bound": 10

"sum other doc count": 232

GET starwars/ search

{
"aggs": {
"most common": {
"terms": {
"field": "word.keyword",
"si1ze": 1,
"show term doc count error": true
}
}
b
"si1ze": 0O
}

"aggregations": {

"most common": {
"doc_count_error_upper_bound": 10,
"sum other doc count": 232,
"buckets": [

{
"key": "Luke",
"doc count": 56,
"doc_count_error_upper_bound": 9
}

]
}
}

GET starwars/ search

{
"aggs": {
"most common": {
"terms": {
"field": "word.keyword",
"si1ze": 1,
"shard size": 20,
"show term doc count error": true
}
}
3
"s1ze": 0O
}

"aggregations": {

"most common": {
"doc_count_error_upper_bound": 0,
"sum other doc count": 224,
"buckets": [

{
"key": "Luke",
"doc count": 64,
"doc_count_error_upper_bound": ©
}

]
}
}

Cardinality
Aggregation

Naive Implementation: HashSet

HashSet noDuplicates = new HashSet();
noDuplicates.add("Luke");
noDuplicates.add("R2");
noDuplicates.add("Luke™);

/] .

noDupllcates.size();

D I D O

Simple Estimator: Even distribution 0 - 1

ash("Luke") -> 0.44
ash("R2") -> 0.71
ash("Jedi") -> 0.07
ash("Luke") -> 0.44

1 1
minvalue 0.07

Estimated cardinality:

@elastic

Probabilistic Counting: Leading 0

hash(value) -> ...

P P RPPOOCOO
P P OORFRREFPR OO
PO RFRPORFRPRORFr O

og®].].]_
Probability — — — or generally —
Y o5 =g Ors Y o

é%mmﬁﬂc

LogLog: Probabilistic Averaging

Average of multiple

LOGLOG COUNTING OF LARGE CARDINALITIES

MARIANNE DURAND AND PHILIPPE FLAJOLET

ABSTRACT. Using an auxiliary memory smaller than the size of this abstract,
the LOGLOG algorithm makes it possible to estimate in a single pass and within
a few percents the number of different words in the whole of Shakespeare’s
works. In general the LOGLOG algorithm makes use of m “small bytes” of
auxiliary memory in order to estimate in a single pass the number of distinct
elements (the “cardinality”) in a file, and it does so with an accuracy that
is of the order of 1/4/m. The “small bytes” to be used in order to count
cardinalities till Nmax comprise about loglog Nmax bits, so that cardinalities
well in the range of billions can be determined using one or two kilobytes of
memory only. The basic version of the LoGLoG algorithm is validated by a
complete analysis. An optimized version, super-LOGLOG, is also engineered
and tested on real-life data. The algorithm parallelizes optimally.

1. INTRODUCTION

The problem addressed in this note is that of determining the number of distinct
elements, also called the cardinality, of a large file. This problem arises in several
areas of data-mining, database query optimization, and the analysis of traffic in

LoglLog: Bucketing for Averages
4 bit bucket, rest for cardinality per bucket

hash("Luke") -> 0100 101001000 -> [4]: 3
hash("R2") -> 1001 001010000 -> [9]: 4
hash("Jedi") -> 0000 101110010 -> [0]: 1

Algorithm LoGLoG(9M: Multiset of hashed values; m = 2¥)
Initialise MV ..., M(™) to 0;
let p(y) be the rank of first 1-bit from the left in y;

for x = bybsy--- € 9M do

set j := (by ---bg)2 (value of first k bits in base 2)

set M(j) = max(M(j)) p(bk_|_1 bk_|_2 "t);
15 Ap0)
return £ := a,,m2m ~J as cardinality estimate.

HyperLoglLog in Practice: Algorithmic Engineering of a
State of The Art Cardinality Estimation Algorithm

Stefan Heule
ETH Zurich and Google, Inc.

stheule@ethz.ch

Marc Nunkesser
Google, Inc.

marcnunkesser

Alexander Hall
Google, Inc.

alexhall@google.com

@google.com

ABSTRACT

Cardinality estimation has a wide range of applications and
is of particular importance in database systems. Various
algorithms have been proposed in the past, and the HY-
PERLOGLOG algorithm is one of them. In this paper, we
present a series of improvements to this algorithm that re-
duce its memory requirements and significantly increase its
accuracy for an important range of cardinalities. We have
implemented our proposed algorithm for a system at Google
and evaluated it empirically, comparing it to the original
HYPERLOGLOG algorithm. Like HYPERLOGLOG, our im-
proved algorithm parallelizes perfectly and computes the
cardinality estimate in a single pass.

timate significantly for a range of important cardinalities.
We evaluate all improvements empirically and compare with
the HYPERLOGLOG algorithm from [7]. Our changes to the
algorithm are generally applicable and not specific to our
system. Like HYPERLOGLOG, our proposed improved al-
gorithm parallelizes perfectly and computes the cardinality
estimate in a single pass.

QOutline. The remainder of this paper is organized as fol-
lows; we first justify our algorithm choice and summarize
related work in Section 2. In Section 3 we give background
information on our practical use cases at Google and list

VI P S B A (- [Y T Y T I [P B JE. S

GET starwars/ search

{
"aggs": 1
"type _count": {
"cardinality": f{
"field": "word.keyword",
"precision_threshold": 10
}
;
3
"size": 0O
;

"took": 3,

"timed out": false,

" shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": ©

I s

"hits": {
"total": 288,
"max_score": 0,
"hits": []

I s

"aggregations": {
"type_count": {

"value": 17

}

}

preclision_threshold
Default 3,000
Maximum 40,000

Memory

precision_threshold x 8 bytes

Cardinality error

threshold=100
threshold=1000
th resh old=10000

)
S~
~—
—
O
—
—
@
@
=
©
@
s

100000
Actua cardinality

GET starwars/ search

{
"aggs": 1
"type _count": {
"cardinality": f{
"field": "word.keyword",
"precision_threshold": 12
}
;
3
"size": 0O
;

"took": 12,

"timed out": false,

" shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": ©

I s

"hits": {
"total": 288,
"max_score": 0,
"hits": []

I s

"aggregations": {
"type_count": {

"value": 16

}

}

Precompute Hashes?

Client or mapper-murmur3 plugin

It Depends

¥ large / high-cardinality fields

¥ low cardinality / numeric fields

Improvement: LogLog-f3

vyw

https://github.com/elastic/elasticsearch/pull/22323#issuecomment-314782891
https://github.com/elastic/elasticsearch/pull/22323#issuecomment-314782891

Improvement?

"New cardinality estimation algorithms for
HyperLogLog sketches"

https://arxiv.org/abs/1702.01284

@elastic

https://arxiv.org/abs/1702.01284

inverse
Document
rrequency

GET starwars/ search

{
"query": {
"match": {
"word": "Luke"

}
}
}

_1ndex": "starwars",
_type": " _doc",
"_1d": "OvVvdy2IBkmPuaFRg659y",
" score": 3.2049506,
" _routing": "1",
_source": {
"word": "Luke"

}
I
{
" index": "starwars",
" _type": " _doc",
" id": "2PVdy2IBkmPuaFRg659y",
" score": 3.2049506,
" _routing": "7",
" source": {
"word": "Luke"
}
I s
{
" 1index": "starwars",
" _type": " _doc",
" 1d": "0_Vdy2IBkmPuaFRg659y",
" score": 3.1994843,
" _routing": "2",
" source": {
"word": "Luke"
}
I s

Term Frequency /
Inverse Document
Frequency (TF/IDF)

@elastic

BM25

Default in Elasticsearch 5.0

Term Frequency
tf(t in d) = \/Frequency

10

15

TF-IDF

BM25

Inverse Document
Frequency

numbDocs
docFreq + 1

tdf(t) =1+ log()

3.5
3.0

2.5

2.0
1.5

1.0

0.5

200

600

800

TF-IDF

BM25
1000

Field-Length Norm

|
vnumlerms

norm(d) =

Query Then Fetch

CLUSTER

NODE 1 - * MASTER

CLUSTER

NODE 1 - * MASTER

DFS Query Then Fetch

Distributed Frequency Search

GET starwars/ _search?search_type=dfs_query then fetch

{
"query": {
"match": {
"word": "Luke"

}
}
}

_1ndex": "starwars",
_type": "_doc",
" 1d": "0fVdy2IBkmPuaFRg659y",
" score": 1.5367417,
" routing": "0",
_source": {
"word": "Luke"

t

I

{
" index": "starwars",
" type": " _doc",
"_1d": "2_Vdy2IBkmPuaFRg659y",
" score": 1.5367417,
" routing": "0",
" source": {

"word": "Luke"

}

I

{
" index": "starwars",
" type": " _doc",
"_1d": "3PVdy2IBkmPuaFRg659y",
" score": 1.5367417,
" _routing": "O",
" source": {

"word": "Luke"

}

I g

Professor Zapinsky proved that the squid is more intelligent than
the housecat when posed with puzzles under similar conditions

Don’t use
dfs_query then_fetch

in productlon. It really
isn't required.

https://www.elastic.co/guide/en/elasticsearch/guide/current/relevance-is-broken.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/relevance-is-broken.html

Single Shard

Default in 7.0

Simon Says

Use a single shard until
it blows up

PUT starwars/ settings
{
"settings": {
"1ndex.blocks.write": true
}
}

POST starwars/_shrink/starletwars?copy_settings=true
{
"settings": {
"number of shards": 1,
number_of replicas": 0

GET starletwars/ search

{
"query": {
"match": {
"word": "Luke"

}
b

" source": false

}

b

_1ndex": "starletwars",
_type": " _doc",

~1d": "O0fVdy2IBkmPuaFRg659y",
_score": 1.5367417,

_routing": "O"
_1ndex": "starletwars",
_type": "_dOC"’

_1d": "2_Vdy2IBkmPuaFRg659y",
_score": 1.5367417,

_routing": "0"
_1ndex": "starletwars",
_type": "_dOC",

~1d": "3Pvdy2IBkmPuaFRg659y",
_score": 1.5367417,
_routing": "O"

GET starletwars/ search

{
"aggs": {
"most common": {
"terms": {
"field": "word.keyword",
"s1ze": 1

"took": 1,
"timed out": false,
" shards": {

"total": 1,

"successful": 1,

"skipped": 0,

"failed": ©

},
"hits": {

"total": 288,

"max_score": 0,

"hits": []

F
"aggregations": {

"most_common": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 224,
"buckets": [

{
"key": "Luke",
"doc_count": 64

Change for the
Cardinality Count?

Conclusion

Tradeoffs...

Consistent Available
Partition Tolerant

Fast Accurate Big

@elastic

Questions?

Philipp Krenn @xeraa

PS: Stickers

@elastic

