

RED HAT TECHNICAL SYMPOSIUM

NSA R&E Symposium Center Monday November 8th, 2010 1300-1600

AGENDA

- 1:00-1:20 Software Central Opening Notes
- 1:20-2:20 Red Hat Enterprise Linux 6 Update
- 2:20-2:30 Break
- 2:30-3:30 Red Hat in the Virtualized Environment & Security
- 3:30-4:00 Q&A Panel w/ Red Hat Technologists

RED HAT ENTERPRISE LINUX 6 UPDATE

Shawn D. Wells Technical Director, Intelligence Programs sdw@redhat.com / 443-534-0130

RED HAT ENTERPRISE LINUX 6 UPDATE RHEL6 FOUNDATION FEATURES & THEMES

Trusted data center platform

Ideally positioned to provide non-disruptive path forward.

 Application and infrastructure performance, scalability and security

Support for varied workloads and advanced hardware capabilities.

Making IT agile across physical, virtual and Cloud

The right operating system across any environment.

RED HAT ENTERPRISE LINUX 6 UPDATE RHEL6 FOUNDATION FEATURES & THEMES

Improved manageability

For large scale virtualization deployments, server & desktop. Samba enhancements for Windows active directory and file sharing

Power management

Efficiency for lower deployment costs, reduced carbon footprint for virt, bare metal, desktop. Hardware level as well as dynamic system service startup and suspend.

• RAS (Reliability, Availability, Serviceability) Hotplug, memory error reporting, filesystem and data integrity. Support tools such as automated crash detection and bug reporting.

RED HAT ENTERPRISE LINUX 6 UPDATE RHEL6 FOUNDATION FEATURES & THEMES

• Hardware enablement and scalability

Maximum efficiency, large configurations (cpu, memory, busses, I/O), NUMA awareness, new BIOS boot loader interface

Supported architectures: x86, x86_64, PPC64, s390x

- Red Hat Network Satellite
 - Install & provision new systems
 - Update existing

7

- Manage configuration files & maintain over time
- Monitoring system metrics
- Multiple managed Satellites on ELA

- Red Hat Network Satellite 5.4
 - RPMs will be now be encrypted with 256-bit keys, up from 128-bit.
 - Find & remove stale instances that are no longer being used
 - Flex Guest / Floating Entitlements
 - Centrally manage SELinux Context on remote files
 - Expanded APIs for 3rd party integration

8

Satellite Deployment Model

• Satellite Deployment Model: Single Satellite

RHN SATELLITE Single Satellite Topology Example

• Satellite Deployment Model: Multi Tiered Satellite

Red Hat Enterprise Linux 6 evolves in concert with hardware advances, reducing system power consumption, taking advantage of hardware with greater numbers of processing and memory resources, and withstanding hardware failures better.

- New scheduler (Completely Fair Scheduler)
- Dynamic addition of processor and memory
- More robust error reporting for PCIe devices (PCIe AER)
- Isolation of memory hardware failures with minimal downtime

- Mature file systems to cater to varied usage and performance characteristics.
 - Ext4: Now default, scales to 16TB
 - GFS2: Scales to 25TB
 - XFS: Scales up to 100TB, tuned for storage arrays
 - NFSv4
- Configured to reduce chances of data corruption for low-end locally attached storage.

- Power management
 - Tickless kernel
 - User-space tools powertop
 - Dynamic throttling of power to devices
 - Relatime drive optimization

PowerTOP version 1.11 (C) 2007 Intel Corporation

C2	mwait	1.1ms (75.3%)
C1	mwait	0.0ms (0.0%)
CO		0.0ms (0.0%)
CO	(cpu running)	(24.7%)
Cn		Avg residency

P-states (frequencies) 1.67 Ghz 9.6% 1333 Mhz 1.0% 1000 Mhz 89.4%

Wakeups-from-idle per second : 689.3 interval: 10.0s

no ACPI power usage estimate available

Top causes for wakeups:

55.4% (678.6)	<pre><kernel core=""></kernel></pre>	:	<pre>hrtimer_start_range_ns (tick_sched_timer)</pre>
34.0% (416.0)	<interrupt></interrupt>	:	PS/2 keyboard/mouse/touchpad
3.0% (37.1)	<interrupt></interrupt>	:	uhci_hcd:usb5, i915@pci:0000:00:02.0
1.3% (16.3)	simpress.bin	:	hrtimer_start_range_ns (hrtimer_wakeup)
1.0% (12.7)	<kernel core=""></kernel>	:	hrtimer_start (tick_sched_timer)
0.9% (10.5)	thunderbird-bin	:	<pre>hrtimer_start_range_ns (hrtimer_wakeup)</pre>

Suggestion: Enable USB autosuspend by pressing the U key or adding usbcore.autosuspend=1 to the kernel command line in the grub config

17 Q - Quit R - Refresh U - Enable USB suspend

Objective: Providing scaling headroom anticipating many years of upcoming hardware generations. Tested and supported limits will likely grow over the course of product lifespan.

• *Kernel scalability limits - x86_64*

Parameter	RHEL5 Supported Limit	RHEL6 Supported Limit	RHEL6 Theoretical Limit
CPUs	64	128	4096
Memory – Physical addressing	1TB	2TB	64TB
Memory – Process virtual address space (note – hardware dependent	2TB	128TB	128TB
IRQs	293	33,024	33,024
# of processes	32,000	32,000 (larger pending testing)	4 million
KVM guest memory	512GB	8TB	64TB
KVM guest CPU	32	64 (pending testing)	64 (pending testing)

• File systems and storage limits - x86_64

	Maximum filesize	Maximum filesystem size
EXT3	2TB	16TB
EXT4	16TB	16TB
GFS	16TB	16TB
GFS2	25TB	25TB
XFS	100TB	100TB

RED HAT ENTERPRISE LINUX 6 UPDATE DETERMINISM & REALTIME ENHANCEMENTS

- Some capabilities from Red Hat in MRG-realtime kernel (currently shipping as layered product) mainstreamed in RHEL6.
 - Determinism Ability to schedule priority tasks predictably and consistently
 - Priority Ensure highest priority applications are not blocked by lower priorities
 - Timer Microsecond precision not timer interrupt, ~millisecond precision

RED HAT ENTERPRISE LINUX 6 UPDATE STORAGE MANAGEMENT

- Topology awareness I/O (alignment and chunk size) based on info from the storage device. This is in dm, LVM, md, and utilities such as parted and mkfs. Interfaces standardized to obtain alignment and optimal I/O stripe width.
- FcoE (fibre channel over ethernet) on specialized adapters (Emulex, Qlogic, Cisco), and on standard NICs. FcoE install & boot support with DCB.
- **ISCSI** root/boot, including target
- NPIV n_Port ID Virtualization

RED HAT ENTERPRISE LINUX 6 UPDATE STORAGE MANAGEMENT: *LVM/MD*

- LVM hot spare; a disk or group of disks used to replace one failing
- Online resize or mirrored & multipath volumes
- Snapshot scalability enhancements for virtualization
- Multipath enhancements
 - Dynamic multipath load balancing. Path selection based on queue depth, or I/O service time
- Mirroring enhancements
 - Mirrored mirror log, avoids need for re-sync after failure
- Selectable hash algorithm for LUKS header, new cryptsetup commands, new libcryptsetup

SOFTWARE RELEASE VERSIONING & SUBSCRIPTIONS

- Red Hat Enterprise Linux Advanced Platform (RHEL AP)
 - > 2 CPUs
 - Includes Global File System (GFS), Red Hat Cluster Suite (RHCS)
- Red Hat Enterprise Linux Enterprise Server (RHEL ES)
 - Less than 2 CPUs
 - Does not include GFS & RHCS

All servers, bare metal or virtual, must have an <u>active</u> Red Hat subscription.

SOFTWARE RELEASE VERSIONING & SUBSCRIPTIONS

- Production 1: Ongoing, active development of features and hardware enablement for inclusion into RHEL.
- Production 2: New software functionality is not available during this phase. The focus for minor releases during this life cycle phase lies on resolving defects with a minimum priority of high.
- Production 3: No new functionality, new hardware enablement or updated installation images are planned.
 ²⁵ Commonly known as "Maintenance Mode."

SOFTWARE RELEASE VERSIONING & SUBSCRIPTIONS

Red Hat Enterprise Linux 5

Mar. 14, 2007	Mar. 31, 2011	Q1 2012	Mar. 31, 2014
Production 1	Production 2	2 Produc	tion 3

- General Availability: March 14, 2007
- End of Production 1 phase: Q4 of 2011
- End of Production 2 phase: Q4 of 2012
- End of Production 3 phase: March 31, 2014
- End of Extended Life Cycle phase: March 31, 2017

Latest information available at: http://www.redhat.com/security/updates/errata/

CONSUMING NSA ENTERPRISE SUBSCRIPTIONS HOW & WHERE TO GET THE SOFTWARE

- Two on-site badged technical consultants at NBP1
 - Jeff Weatherford: jweatherford@redhat.com (u) 240-373-0842
 - Joe Glenn jglenn@redhat.com
 (u) 410-854-3104

Highside contact information on SearchLight or "go redhat"

RED HAT IN THE VIRTUALIZED ENVIRONMENT

Chris Runge Technical Director, U.S crunge@redhat.com / 703-748-2202

RED HAT VIRTUALIZATION EVOLUTION OF x86 VIRTUALIZATION

RED HAT IN THE VIRTUALIZED ENVIRONMENT KERNEL-BASED VIRTUAL MACHINE (KVM)

Included in Linux kernel since 2006

Added to RHEL 5.4 and included in RHEL 6

Xen supported in RHEL 5 through 2014

Available on x86_64 architecture

Requires Intel VT-X or AMD-V CPU capabilities

RED HAT IN THE VIRTUALIZED ENVIRONMENT KVM GUEST SUPPORT

Runs Linux, Windows and other operating system guests

RHEL guests supported on third-party hypervisors:

- Microsoft Hyper-V
- VMWare

Microsoft certified drivers ensure compliance and support (WHQL and SVVP)

RED HAT IN THE VIRTUALIZED ENVIRONMENT KVM ADVANTAGES

The OS is the hypervisor

Same platform for bare-metal, virtualization, and cloud

KVM is a Linux kernel module

VM's run as Linux processes

Simplifies certification

KVM architecture provides high "feature-velocity"

RED HAT IN THE VIRTUALIZED ENVIRONMENT KVM FEATURE-VELOCITY: SCALABILITY

RED HAT IN THE VIRTUALIZED ENVIRONMENT KVM ADVANCED FEATURES

Kernel Same-Page Merging (KSM)

Memory Page Sharing

Securely shares identical memory pages between virtual machines

RED HAT IN THE VIRTUALIZED ENVIRONMENT KVM ADVANCED FEATURES

RED HAT IN THE VIRTUALIZED ENVIRONMENT KVM ADVANCED FEATURES

Thin Provisioning

Allocate storage only when needed

Oversubscribe storage

Transparent to VM

Improve storage utilization

Reduced storage costs

Works with NFS, iSCSI, and FC

RED HAT IN THE VIRTUALIZED ENVIRONMENT VIRTUALIZATION IN RHEL 6

Increased scalability

- Guest/host CPU and memory
 - Host: 4096 cores, 64 TB
 - Guest: 64 vCPUs, 1 TB

Increased Security

sVirt

Migration Tools Available

v2v – convert Xen VM's to KVM

Increased performance

- Improved guest/host memory management
- Networking improvements
- Storage improvements

RED HAT IN THE VIRTUALIZED ENVIRONMENT FOUNDATION FOR THE CLOUD

PHASE 1: CONSOLIDATE VIRTUALIZE YOUR SERVERS

Virtualize your physical hardware to achieve higher utilization, consolidation, and flexibility.

Virtualization increases the utilization of physical servers and provides a foundation for cloud computing.

Virtualization technology included in RHEL6.

PHASE 2: AUTOMATE BUILD A PRIVATE CLOUD

As you expand your use of virtualization, build a private cloud to manage the scale and complexity.

A private cloud abstracts multiple instances of virtual resources into elastic pools of computation with self-provisioning and scalable services.

PHASE 3: UTILITY ADD ADDITIONAL CLOUDS

As you expand your use of cloud computing, add additional clouds delivered as a utility to increase capacity and lower costs.

Red Hat's cloud architecture lets you manage and integrate various virtualization systems and cloud providers together. This allows you to leverage additional clouds as a utility.

RED HAT IN THE VIRTUALIZED ENVIRONMENT FOUNDATION FOR THE CLOUD: MANY COMPONENTS ALREADY IN NSA INFRASTRUCTURE

RED HAT SECURITY UPDATE

Gunnar Hellekson CTO, Red Hat Public Sector gunnar.hellekson@redhat.com / 202-507-9027

SELINUX

- Confined users
 - Role-based controls to limit system access for users.
- Sandbox
 - Untrusted applications can be run confined to prevent compromising the entire system
- X Access Control Extension (XACE).
- SELinux Kiosk Mode
 - Creation of a user session environment that is valid for a limited time.

SECURITY MLS DESKTOP

SECURITY VIRTUALIZATION

RHEV and KVM inherit the security features of Linux and RHEL

SELinux security policy infrastructure

Provides protection and isolation for virtual machines and host

Compromised virtual machine cannot access other VMs or host

sVirt Project

Sub-project of NSA's SELinux community. Provides "hardened" hypervisors

Multilevel security. Isolate guests

Contain any guest breaches

SCAP

SCAP and TNC

Provides continuous lifecycle management for virtual machines and their hosts

Compromised virtual machine can be quarantined

Allows a provider's security SLA to be enforced by customers

OpenSCAP

An open source implementation of SCAP

Included in RHEL 6

SECURITY COMMON CRITERIA UPDATE

RHEL 5.6

- Refreshed to include KVM
- Custom protection profile

RHEL 6

- Will include sVirt, IPSec
- Targeting EAL 4
- Again, custom protection profile

Q&A PANEL SESSION