The Bits Must Flow

netWorking through the abstractions

SPECIAL THANKS TO ALL OUR AWESOME CAMP SPONSORS!

JULY 29TH - AUG. 1ST

l'm fen (they/them)

social: @crayzeigh@hachyderm.io

slides: speaking.crayzeigh.com

Developer Advocate:

EQUINX

What happens when you visit a website?

It's not DNS
There's no way it's DNS
It was DNS

-SSBroski

OSI 7-Layer model

Application Presentation Session Transport Network Data Link Physical

OSI	TCP/IP
Application	Application
Presentation	_
Session	_
Transport	Transport
Network	Internet
Data Link	Network Access
Physical	_

Why all these layers anyway?

Layer 2: Network Access

Data Frames link digital to physical

Layer 2: Switching

Sending data to local devices

Frame Header

Preamble	SFD	Dest. MAC	Src. MAC	Туре	Data & Pad	FCS
7 Bytes	1 Byte	6 Bytes	6 Bytes	2 Bytes	46–1500 Bytes	4 Bytes

MAC¹ Address

01:23:45:67:89:ab

1. Media Access Control

MAC Address

- Identifies the (network) device
- For devices on the *local* network

Address Resolution Protocol

Mapping IPs and MAC addresses

- Mapping IPs and MAC addresses
- Necessary for your device to talk to your router

- Mapping IPs and MAC addresses
- Necessary for your device to talk to your router
- Finds neighbors through broadcast

- Mapping IPs and MAC addresses
- Necessary for your device to talk to your router
- Finds neighbors through broadcast
- arp -a for your local table

Virtual Local Area Networks

VLANS

Used for limiting broadcast domains

VLANS

- Used for limiting broadcast domains
- up to 4096 VLANs¹

1. VXLAN addresses this limitation but that's A Whole Other Thing

VLANS

- Used for limiting broadcast domains
- up to 4096 VLANs¹
- Can be native (default traffic on a switch port)
 or tagged (logically divided in packet header)

1. VXLAN addresses this limitation but that's A Whole Other Thing

Learn about Layer 2 🗹					
Manage	VLAN	Search table	Q	+ Add VLAN	
∩ VL	.AN	Devices	Location	Deployed Date 💠	Description
0 42	AN	Devices		Deployed Date 💂	Description
104	49	0	D C	Sep 4th, 2020 5:53 AM	provisioning_vlan
1 17	'3	0	NY NY	2 years ago	layer2-testing
1 17	74	0	NY NY	2 years ago	layer2-testing-2
125	54	0	D A	Oct 14th, 2020 3:33 PM	"vSAN"
133	36	1 🚯	С Н	23 days ago	default
133	37	1 🚯	— СН	23 days ago	elite
133	38	0	D A	Oct 14th, 2020 3:33 PM	"Management"
133	39	0	D A	Oct 14th, 2020 3:33 PM	"VM Private Net"
134	40	0	D A	Oct 14th, 2020 3:33 PM	"vMotion"
144	40	0	D A	Oct 14th, 2020 3:33 PM	"VM Public Net"
20)20	0	— СН	22 days ago	Metal-AWS

Layer 3: Internet Protocol

Packets wrap your digital data and route it remotely

Layer 3: Routing

Directing data to remote destinations

IPv4 Packet Header

IP Address Classes and CIDR

IP Classes & CIDR

- Classless Inter-Domain Routing

IP Classes & CIDR

- Classless Inter-Domain Routing
- Helps determine destination locality, i.e. routing

IP Classes & CIDR

- Classless Inter-Domain Routing
- Helps determine destination locality, i.e. routing
- CIDR replaced "class a/b/c" IP addressing to help address IP address availability

CIDR Notation

10.10.10.10/24

Host/Network bits

10.10.10/24

IP Address: 10.10.10.10

Subnet Mask: 255.255.255.0

Converts to Binary

```
IP: 00001010.00001010.00001010.00001010
```

SM: 11111111.11111111111111111.0000000

In the Subnet Mask:

- 1 = Network
- 0 = Host

Special IPs

- Broadcast (ex. 10.10.10.255)
 - host bits are all 1's
 - For sending data to all hosts in a network
- Network (ex. 10.10.10.0)
 - host bits are all 0's
 - only used for forwarding data between routers

Putting	it al	I toget	her

CIDR	10.10.10.10/24

10.10.10.0/24

Broadcast IP	10.10.10.255
--------------	--------------

Available Host IPs 10.10.10.1 - 254

Bigger I	Networks
----------	-----------------

CIDR 192.168.1.100/22

Network 192.168.0.0/22

Broadcast IP 192.168.3.255

Available Host IPs 192.168.0.1 - 192.168.3.254

Weird Ones

Select

✓ Select

/32 (1 IP) - \$0.15/hr

/31 (2 IPs) - \$0.3/hr

/30 (4 IPs) - \$0.6/hr

Description (optionar)

Weird Ones Explained

/30

- "Costs" 4 IPs, but only gives 2 host addresses
- Broadcast & Network IPs still required
- Used for legacy compatibility or you just really like holding IP addresses

Weird Ones Explained

/31

- Creates 2 adjacent host IPs
- Only "costs" 2 IPs
- Proposed in RFC3021 (in 2000) to combat dwindling IP availability

Weird Ones Explained

/32

- Single IP Address
- useful generally for isolating public internet traffic

IPv6 Packet Header

- 128 bits long (vs 32 bits for v4)

- 128 bits long (vs 32 bits for v4)

 $2^{32} \approx 4.3 \times 10^9$

- 128 bits long (vs 32 bits for v4)

 $2^{32} \approx 4.3 \times 10^9 \approx 4.3 \text{ billion}$

- 128 bits long (vs 32 bits for v4)

$$2^{32} \approx 4.3 \times 10^9 \approx 4.3$$
 billion

$$2^{128} \approx 3.4 \times 10^{28}$$

- 128 bits long (vs 32 bits for v4)

 $2^{32} \approx 4.3 \times 10^9 \approx 4.3$ billion

 $2^{128} \approx 3.4 \text{x} 10^{28} \approx 27 \text{ orders of magnitude}$ larger

- 128 bits long (vs 32 bits for v4)
- introduced to handle IP shortage
- written as 8 groups of 4 bytes in hex

fddd:f00d:b33f:0000:0000:0000:0000:0001

fddd:f00d:b33f:0:0:0:1

fddd:f00d:b33f::1

O0ff:0000:0000:0000:0001:0000:0000:0001

Which one is correct?

ff:0:0:0:1:0:0:1

- 1. ff::1:0:0:1
- 2. ff::1::1
- 3. ff:0:0:0:1::1

Which one is correct?

ff:0:0:0:1:0:0:1

- 1. ff::1:0:0:1
- 2. ff::1::1 (ambiguous)
- 3. ff:0:0:0:1::1 (longest 0's must be shortened¹)

1. RFC 5952

Subnetting

	Netw	ork Bits			Но	st Bits	
	Routing Pre	fix	Subnet ID		Interfac	e Identifier	
XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX

Subnetting

```
ifconfig | grep inet6
    inet6 ::1 prefixlen 128
    inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1
    inet6 fe80::1470:43d6:1243:7a20%en0 prefixlen 64 secured
scopeid 0x4
    inet6 2601:19e:8380:20dc:4ea:6990:6d8e:68a3 prefixlen 64
autoconf secured
    inet6 2601:19e:8380:20dc:5ce:b0e:70ad:988 prefixlen 64
deprecated autoconf temporary
    inet6 2601:19e:8380:20dc::f42a prefixlen 64 dynamic
    inet6 2601:19e:8380:20dc:141b:7764:190d:9240 prefixlen 64
deprecated autoconf temporary
    inet6 2601:19e:8380:20dc:d477:fa12:2a44:7983 prefixlen 64
autoconf temporary
```

Subnetting

address	obtained
::1	loopback (special)
fe80::1470:43d6:1243:7a20	self-assigned (local)
2601:19e:8380:20dc:4ea:6990:6d8e:68a3	self-assigned (global)
2601:19e:8380:20dc::f42a	DHCPv6 (global)

Routing

Sending data to remote addresses

Source: 10.10.10.10/24 Destination: 10.10.10.10.0

Source IP: 10.10.10.10 Network: 255.255.250

Destination: 10.10.10.100

Source: 10.10.10.10/24 Destination: 10.10.10.100

- 1. Checks network space to see address is local
- 2. Sends local ARP broadcast to find MAC of destination
- 3. wraps packet in frame with newly discovered MAC
- 4. sends data frame through switch to destination "directly"

Source: 10.10.10.10/24 Destination: 1.1.1.1

Source IP: 10.10.10.10 Network: 255.255.25.0

Destination: 1.1.1

Source: 10.10.10.10/24

Destination: 1.1.1.1

- 1. Checks network space and see's address is remote
- 2. Wraps packet in frame with router's mac address and desired destination IP, forwards to router
- 3. Forwards frame to the router, router re-wraps packet with a frame pointing to the next router in line
- 4. And so on until the local router for 1.1.1.1 receives the packet and wraps in the final destination frame

How does the router know where the next hop in line is?

72

Routing Tables

3 Types of Routes:

- Connected: The networks connected to your interfaces
- Static: Manually set, e.g. Default Route/Gateway
- Learned: Learned from advertising peers, e.g. via
 BGP

BGP

fen 餐 🐩 @crayzeigh@hachyderm.io

@malanalysis
things up takes bgp

to err is dns, but to globally f

Dec 15, 2022 at 11:05 · **②** · Toot! · **□** 10 · ★ 19

Full-mesh internal BGP

BGP

Anycast

Anycast

Shortest Path: 8.8.8.8 AS path xx1 xx2

8.8.8.8 AS path xx1 xx3 xx4 8.8.8.8 AS path xx1 xx2 xx4 8.8.8.8 AS path xx1 xx3 xx4 xx2

Anycast Benefits

IP address or hostname									
147.75.40.38						Test			
LOCATION	REQ	MIN	MAX	AVG	STD DEV	LOSS			
Frankfurt 147.75.40.38	3	8.42 ms	8.52 ms	8.47 ms	0.04 ms	0%			
Amsterdam 147.75.40.38	3	0.73 ms	1.19 ms	0.97 ms	0.19 ms	0%			
London 147.75.40.38	3	7.9 ms	8.88 ms	8.27 ms	0.43 ms	0%			
New York 147.75.40.38	3	1.71 ms	2.53 ms	2.06 ms	0.34 ms	0%			
Dallas 147.75.40.38	3	39.06 ms	39.95 ms	39.42 ms	0.38 ms	0%			
San Francisco 147.75.40.38	3	2.2 ms	2.65 ms	2.38 ms	0.2 ms	0%			
Singapore 147.75.40.38	3	1.23 ms	1.83 ms	1.46 ms	0.27 ms	0%			
Sydney 147.75.40.38	3	92.49 ms	92.57 ms	92.54 ms	0.04 ms	0%			
Tokyo 147.75.40.38	3	74.49 ms	74.6 ms	74.57 ms	0.05 ms	0%			
Bangalore 147.75.40.38	3	147.75 ms	148.62 ms	148.05 ms	0.41 ms	0%			

Anycast Benefits

Amsterdam 147.75.40.38	3	0.73 ms	1.19 ms	0.97 ms	0.19 ms	0%
London 147.75.40.38	3	7.9 ms	8.88 ms	8.27 ms	0.43 ms	0%
New York 147.75.40.38	3	1.71 ms	2.53 ms	2.06 ms	0.34 ms	0%
Dallas 147.75.40.38	3	39.06 ms	39.95 ms	39.42 ms	0.38 ms	0%
San Francisco	3	2.2 ms	2.65 ms	2.38 ms	0.2 ms	0%
Singapore 147.75.40.38	3	1.23 ms	1.83 ms	1.46 ms	0.27 ms	0%

What Happens when you visit a website?

EQUINIX

Try it!

use discount code **THATCONF23** for \$800 credit

http://eqix.co/metal

/assets/Simple_Footer_center.png

@crayzeigh@hachyderm.io 82

Getting Started

check out our youtube channel for tips and ideas

http://eqix.co/start-metal

Session Reedback

thanks!

social:

@crayzeigh@hachyderm.io

slides:

speaking.crayzeigh.com

organizer:

host:

